Leveraging heuristic client selection for enhanced secure federated submodel learning

选择(遗传算法) 计算机科学 启发式 趋同(经济学) 集合(抽象数据类型) 索引(排版) 比例(比率) 计算 相似性(几何) 机器学习 数据挖掘 人工智能 算法 万维网 图像(数学) 物理 经济 量子力学 程序设计语言 经济增长
作者
Panyu Liu,Tongqing Zhou,Zhiping Cai,Fang Liu,Yeting Guo
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103211-103211
标识
DOI:10.1016/j.ipm.2022.103211
摘要

As the number of clients for federated learning (FL) has expanded to the billion level, a new research branch named secure federated submodel learning (SFSL) has emerged. In SFSL, mobile clients only download a tiny ratio of the global model from the coordinator’s global. However, SFSL provides little guarantees on the convergence and accuracy performance as the covered items may be highly biased. In this work, we formulate the problem of client selection through optimizing unbiased coverage of item index set for enhancing SFSL performance. We analyze the NP-hardness of this problem and propose a novel heuristic multi-group client selection framework by jointly optimizing index diversity and similarity. Specifically, heuristic exploration on some random client groups are performed progressively for an empirical approximate solution. Meanwhile, private set operations are used to preserve the privacy of participated clients. We implement the proposal by simulating large-scale SFSL application in a lab environment and conduct evaluations on two real-world data-sets. The results demonstrate the performance (w.r.t., accuracy and convergence speed) superiority of our selection algorithm than SFSL. The proposal is also shown to yield significant computation advantage with similar communication performance as SFSL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kamalika完成签到,获得积分10
1秒前
1秒前
1秒前
禹卓发布了新的文献求助10
2秒前
李爱国应助天天采纳,获得30
3秒前
4秒前
Enyu完成签到 ,获得积分10
4秒前
lmj完成签到,获得积分10
4秒前
花景铭发布了新的文献求助10
5秒前
幸福幻巧应助科研羊采纳,获得10
5秒前
幸福安白发布了新的文献求助10
5秒前
6秒前
7秒前
9秒前
9秒前
9秒前
科目三应助禹卓采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
彭于晏应助Fiy采纳,获得10
10秒前
10秒前
yangfan发布了新的文献求助10
10秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
HHHHH发布了新的文献求助10
13秒前
14秒前
16秒前
LPL发布了新的文献求助10
16秒前
勤奋的立果完成签到 ,获得积分10
16秒前
大个应助猪猪hero采纳,获得10
16秒前
LKC完成签到 ,获得积分10
17秒前
19秒前
997发布了新的文献求助10
19秒前
19秒前
CodeCraft应助李茉琳采纳,获得10
20秒前
GGbond完成签到,获得积分20
21秒前
胡霖完成签到,获得积分10
21秒前
skylee9527发布了新的文献求助10
21秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351