Leveraging heuristic client selection for enhanced secure federated submodel learning

选择(遗传算法) 计算机科学 启发式 趋同(经济学) 集合(抽象数据类型) 索引(排版) 比例(比率) 计算 相似性(几何) 机器学习 数据挖掘 人工智能 算法 万维网 图像(数学) 物理 经济 量子力学 程序设计语言 经济增长
作者
Panyu Liu,Tongqing Zhou,Zhiping Cai,Fang Liu,Yeting Guo
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103211-103211
标识
DOI:10.1016/j.ipm.2022.103211
摘要

As the number of clients for federated learning (FL) has expanded to the billion level, a new research branch named secure federated submodel learning (SFSL) has emerged. In SFSL, mobile clients only download a tiny ratio of the global model from the coordinator’s global. However, SFSL provides little guarantees on the convergence and accuracy performance as the covered items may be highly biased. In this work, we formulate the problem of client selection through optimizing unbiased coverage of item index set for enhancing SFSL performance. We analyze the NP-hardness of this problem and propose a novel heuristic multi-group client selection framework by jointly optimizing index diversity and similarity. Specifically, heuristic exploration on some random client groups are performed progressively for an empirical approximate solution. Meanwhile, private set operations are used to preserve the privacy of participated clients. We implement the proposal by simulating large-scale SFSL application in a lab environment and conduct evaluations on two real-world data-sets. The results demonstrate the performance (w.r.t., accuracy and convergence speed) superiority of our selection algorithm than SFSL. The proposal is also shown to yield significant computation advantage with similar communication performance as SFSL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
打打应助Sirene采纳,获得30
刚刚
kigyccwh发布了新的文献求助10
1秒前
叶95发布了新的文献求助10
1秒前
1秒前
小小富完成签到,获得积分10
2秒前
Ray羽曦~完成签到,获得积分10
2秒前
可爱的函函应助zfd采纳,获得10
3秒前
星辰大海应助Echo采纳,获得10
3秒前
4秒前
ohh完成签到,获得积分10
4秒前
我是老大应助研友_LOokQL采纳,获得10
4秒前
yutingemail发布了新的文献求助10
5秒前
5秒前
5秒前
大个应助平常的宝马采纳,获得10
5秒前
lily发布了新的文献求助10
6秒前
7秒前
橙橙发布了新的文献求助10
7秒前
hazekurt完成签到,获得积分10
7秒前
董晏殊完成签到,获得积分10
7秒前
玖锱完成签到,获得积分20
7秒前
7秒前
hzzzz完成签到,获得积分10
7秒前
佳怡完成签到,获得积分10
7秒前
7秒前
蕊蕊完成签到,获得积分10
8秒前
8秒前
8秒前
求助人员发布了新的文献求助30
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
微笑发布了新的文献求助10
9秒前
9秒前
Hearn发布了新的文献求助10
9秒前
英俊的铭应助Regina采纳,获得10
10秒前
奋斗黎昕完成签到,获得积分10
10秒前
小易发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066