清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urban resilience and livability performance of European smart cities: A novel machine learning approach

弹性(材料科学) 支持向量机 随机森林 机器学习 人工智能 智慧城市 公制(单位) 朴素贝叶斯分类器 聚类分析 计算机科学 工程类 物联网 计算机安全 运营管理 热力学 物理
作者
Adeeb A. Kutty,Tadesse G. Wakjira,Murat Küçükvar,Galal M. Abdella,Nuri C. Onat
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:378: 134203-134203 被引量:86
标识
DOI:10.1016/j.jclepro.2022.134203
摘要

Smart cities are centres of economic opulence and hope for standardized living. Understanding the shades of urban resilience and livability in smart city models is of paramount importance. This study presents a novel two-stage data-driven framework combining a multivariate metric-distance analysis with machine learning (ML) techniques for resilience and livability assessment of smart cities. A longitudinal dataset for 35 top-ranked European smart cities from 2015 till 2020 applied as the case study under the proposed framework. Initially, a metric distance-based weighting approach is used to weight the indicators and quantify the scores across each aspect under city resilience and urban livability. The key aspects under city resilience include social, economic, infrastructure and built environment and, institutional resilience, while under urban livability, the aspects include accessibility, community well-being, and economic vibrancy. Fuzzy c-means clustering as an unsupervised machine learning technique is used to sort smart cities based on the degree of performance. In addition, an intelligent approach is presented for the prediction of the degree of livability, resilience, and aggregate performance of smart cities based on various supervised ML techniques. Classification models such as Naïve Bayes, k-nearest neighbors (kNN), support vector machine (SVM), Classification and Regression Tree (CART) and, ensemble models including Random Forest (RF) and Gradient Boosting machine (GBM) were used. Three coefficients (accuracy, Cohen's Kappa (κ) and average area under the precision-recall curve (AUC-PR)) along with confusion matrix were used to appraise the performance of the classifier ML models. The results revealed GBM as the best classification and predictive model for the resilience, livability, and aggregate performance assessment. The study also revealed Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, and Amsterdam as the smart cities that co-create resilience and livability in their development model with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
5秒前
研友_VZG7GZ应助123采纳,获得10
23秒前
培培完成签到 ,获得积分10
40秒前
迷茫的一代完成签到,获得积分10
56秒前
1分钟前
1分钟前
ResKeZhang发布了新的文献求助10
1分钟前
研友_LN25rL完成签到,获得积分10
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
ResKeZhang完成签到,获得积分10
1分钟前
gyx完成签到 ,获得积分10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
3分钟前
胡萝卜完成签到,获得积分10
3分钟前
酷酷的紫南完成签到 ,获得积分10
3分钟前
朔月发布了新的文献求助20
3分钟前
4分钟前
刻苦的青争完成签到 ,获得积分10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
渣渣发布了新的文献求助10
4分钟前
淞淞于我完成签到 ,获得积分10
4分钟前
凉面完成签到 ,获得积分10
4分钟前
郑雅柔完成签到 ,获得积分0
4分钟前
高源伯完成签到 ,获得积分10
4分钟前
小红书求接接接接一篇完成签到,获得积分10
5分钟前
cgs完成签到 ,获得积分10
5分钟前
秋2完成签到 ,获得积分10
5分钟前
uppercrusteve完成签到,获得积分10
5分钟前
6分钟前
Jasperlee完成签到 ,获得积分10
6分钟前
wlscj应助科研通管家采纳,获得20
6分钟前
6分钟前
123发布了新的文献求助10
6分钟前
CipherSage应助123采纳,获得10
6分钟前
strzeng完成签到,获得积分10
7分钟前
Tong完成签到,获得积分0
7分钟前
7分钟前
聪慧的凝海完成签到 ,获得积分10
8分钟前
时代更迭完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293362
求助须知:如何正确求助?哪些是违规求助? 4443514
关于积分的说明 13831288
捐赠科研通 4327228
什么是DOI,文献DOI怎么找? 2375322
邀请新用户注册赠送积分活动 1370645
关于科研通互助平台的介绍 1335437