Urban resilience and livability performance of European smart cities: A novel machine learning approach

弹性(材料科学) 支持向量机 随机森林 机器学习 人工智能 智慧城市 公制(单位) 朴素贝叶斯分类器 聚类分析 计算机科学 工程类 物联网 计算机安全 运营管理 热力学 物理
作者
Adeeb A. Kutty,Tadesse G. Wakjira,Murat Küçükvar,Galal M. Abdella,Nuri C. Onat
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:378: 134203-134203 被引量:111
标识
DOI:10.1016/j.jclepro.2022.134203
摘要

Smart cities are centres of economic opulence and hope for standardized living. Understanding the shades of urban resilience and livability in smart city models is of paramount importance. This study presents a novel two-stage data-driven framework combining a multivariate metric-distance analysis with machine learning (ML) techniques for resilience and livability assessment of smart cities. A longitudinal dataset for 35 top-ranked European smart cities from 2015 till 2020 applied as the case study under the proposed framework. Initially, a metric distance-based weighting approach is used to weight the indicators and quantify the scores across each aspect under city resilience and urban livability. The key aspects under city resilience include social, economic, infrastructure and built environment and, institutional resilience, while under urban livability, the aspects include accessibility, community well-being, and economic vibrancy. Fuzzy c-means clustering as an unsupervised machine learning technique is used to sort smart cities based on the degree of performance. In addition, an intelligent approach is presented for the prediction of the degree of livability, resilience, and aggregate performance of smart cities based on various supervised ML techniques. Classification models such as Naïve Bayes, k-nearest neighbors (kNN), support vector machine (SVM), Classification and Regression Tree (CART) and, ensemble models including Random Forest (RF) and Gradient Boosting machine (GBM) were used. Three coefficients (accuracy, Cohen's Kappa (κ) and average area under the precision-recall curve (AUC-PR)) along with confusion matrix were used to appraise the performance of the classifier ML models. The results revealed GBM as the best classification and predictive model for the resilience, livability, and aggregate performance assessment. The study also revealed Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, and Amsterdam as the smart cities that co-create resilience and livability in their development model with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SJJ应助June采纳,获得30
1秒前
小透明应助June采纳,获得30
1秒前
2秒前
2秒前
上官若男应助liao采纳,获得10
4秒前
PubLing_完成签到,获得积分10
5秒前
hexy629发布了新的文献求助20
7秒前
科研通AI6应助ll采纳,获得10
7秒前
神奇小鹿完成签到 ,获得积分10
7秒前
Lucas应助wss采纳,获得10
7秒前
8秒前
干净的谷南完成签到,获得积分10
9秒前
成就凡双应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
元谷雪应助科研通管家采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
成就凡双应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
小马驹完成签到,获得积分10
11秒前
11秒前
黑皮金刚完成签到,获得积分10
12秒前
Jasper应助李蕊采纳,获得10
13秒前
JamesPei应助小乐儿~采纳,获得10
13秒前
小正发布了新的文献求助10
13秒前
17秒前
星辰大海应助木子采纳,获得10
19秒前
19秒前
阿良完成签到,获得积分10
20秒前
22秒前
微了个球发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527