Urban resilience and livability performance of European smart cities: A novel machine learning approach

弹性(材料科学) 支持向量机 随机森林 机器学习 人工智能 智慧城市 公制(单位) 朴素贝叶斯分类器 聚类分析 计算机科学 工程类 物联网 计算机安全 物理 热力学 运营管理
作者
Adeeb A. Kutty,Tadesse G. Wakjira,Murat Küçükvar,Galal M. Abdella,Nuri C. Onat
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:378: 134203-134203 被引量:86
标识
DOI:10.1016/j.jclepro.2022.134203
摘要

Smart cities are centres of economic opulence and hope for standardized living. Understanding the shades of urban resilience and livability in smart city models is of paramount importance. This study presents a novel two-stage data-driven framework combining a multivariate metric-distance analysis with machine learning (ML) techniques for resilience and livability assessment of smart cities. A longitudinal dataset for 35 top-ranked European smart cities from 2015 till 2020 applied as the case study under the proposed framework. Initially, a metric distance-based weighting approach is used to weight the indicators and quantify the scores across each aspect under city resilience and urban livability. The key aspects under city resilience include social, economic, infrastructure and built environment and, institutional resilience, while under urban livability, the aspects include accessibility, community well-being, and economic vibrancy. Fuzzy c-means clustering as an unsupervised machine learning technique is used to sort smart cities based on the degree of performance. In addition, an intelligent approach is presented for the prediction of the degree of livability, resilience, and aggregate performance of smart cities based on various supervised ML techniques. Classification models such as Naïve Bayes, k-nearest neighbors (kNN), support vector machine (SVM), Classification and Regression Tree (CART) and, ensemble models including Random Forest (RF) and Gradient Boosting machine (GBM) were used. Three coefficients (accuracy, Cohen's Kappa (κ) and average area under the precision-recall curve (AUC-PR)) along with confusion matrix were used to appraise the performance of the classifier ML models. The results revealed GBM as the best classification and predictive model for the resilience, livability, and aggregate performance assessment. The study also revealed Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, and Amsterdam as the smart cities that co-create resilience and livability in their development model with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
活力毛豆完成签到 ,获得积分10
1秒前
breaddog完成签到,获得积分10
2秒前
4秒前
5秒前
7秒前
情怀应助无限毛豆采纳,获得10
8秒前
G浅浅完成签到,获得积分10
10秒前
morlison发布了新的文献求助10
11秒前
不配.应助小书虫采纳,获得10
13秒前
16秒前
17秒前
Lbro完成签到,获得积分10
20秒前
芊芊完成签到 ,获得积分10
20秒前
无限毛豆发布了新的文献求助10
22秒前
22秒前
25秒前
Lbro发布了新的文献求助10
25秒前
27秒前
28秒前
morlison完成签到,获得积分10
34秒前
科研通AI2S应助Ryu_Jeon采纳,获得10
34秒前
ho完成签到,获得积分10
37秒前
42秒前
43秒前
然然发布了新的文献求助10
47秒前
lee发布了新的文献求助10
49秒前
53秒前
然然完成签到,获得积分10
55秒前
非要叫我起个昵称完成签到,获得积分10
59秒前
1分钟前
1分钟前
Jasper应助周mm采纳,获得10
1分钟前
1分钟前
真的OK发布了新的文献求助10
1分钟前
Somnolence咩完成签到,获得积分10
1分钟前
lee完成签到,获得积分10
1分钟前
tracy完成签到,获得积分10
1分钟前
上善若水发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371942
求助须知:如何正确求助?哪些是违规求助? 2989935
关于积分的说明 8737688
捐赠科研通 2673217
什么是DOI,文献DOI怎么找? 1464397
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668868