In-situ growth of Co/Zn bimetallic MOF on GO surface to prepare GO supporting Co@C single-atom catalyst for Hg0 oxidation

催化作用 原位 双金属片 化学工程 化学 Atom(片上系统) 无机化学 材料科学 有机化学 计算机科学 工程类 嵌入式系统
作者
Xiaopeng Zhang,Xiangkai Han,Cheng Gao,Xinxin Wang,Yuying Wei,Ning Zhang,Junjiang Bao,Ning Xu,Gaohong He
出处
期刊:Fuel [Elsevier]
卷期号:333: 126135-126135 被引量:22
标识
DOI:10.1016/j.fuel.2022.126135
摘要

• GO support sigle-atom Co catalysts were successfully synthesized. • MOF on GO has highly dispersion degree giving a large BET surface area. • The Co in MOF mainly stay in single-atom status which is the main active site. • The Hg 0 oxidation activity of Co 2.5 -SAs@NC/GO-1 is above 95 % at 120–180 °C. Oxidation of Hg 0 to Hg 2+ is an efficient way to remove Hg 0 from flue gas. Chemisorbed oxygen as the main active site plays an important role in Hg 0 oxidation process. Single-atom catalyst has an excellent ability of transforming gaseous oxygen into chemisorbed oxygen. In the present work, graphene oxide (GO) was used as support to in-situ grow Co/Zn bimetallic MOF on GO surface. After pyrolysis, a GO supported Co@C single-atom catalyst was obtained. SEM and TEM results show that GO supporting gives a high dispersion for calcined MOF particles. HAADF-STEM results prove that most of the Co atoms in calcined MOF particles stay as single-atom status. EXAFS indicated that the Co atoms in the catalyst was coordinated with N, and the coordination was dominated by CoN 2 . CoN 2 can capture and activate gaseous oxygen forming more chemisorbed oxygen. Thanks to the high dispersion of calcined MOF and higher chemisorbed oxygen concentration, the Hg 0 oxidation efficiency of the obtained catalyst (Co 2.5 -SAs@NC/GO-1) can reach above 90 % in the temperature range of 120–180 °C with 0.075 g loading amount at the GHSV of 180, 000 h −1 . The probable reaction pathway was analyzed by an adsorption–desorption experiment and XPS over the used and regenerated Co 2.5 -SAs@NC/GO-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Jessica发布了新的文献求助10
1秒前
ding应助Fine采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
Zenia应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
buno应助科研通管家采纳,获得10
3秒前
Zenia应助科研通管家采纳,获得10
3秒前
复杂黑夜发布了新的文献求助10
3秒前
3秒前
一一应助科研通管家采纳,获得10
3秒前
Zenia应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
buno应助科研通管家采纳,获得10
3秒前
Zenia应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
狂野大有完成签到,获得积分10
4秒前
疯狂的雁卉完成签到,获得积分10
4秒前
干净的夜香完成签到,获得积分20
4秒前
edtaa发布了新的文献求助10
5秒前
坚定天蓝发布了新的文献求助10
5秒前
5秒前
5秒前
坚强若翠发布了新的文献求助10
5秒前
桐桐应助现代听枫采纳,获得10
8秒前
小葛发布了新的文献求助10
8秒前
山茶发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013