Rethinking the Vulnerability of DNN Watermarking

数字水印 水印 计算机科学 稳健性(进化) 忠诚 人工智能 预处理器 脆弱性(计算) 高保真 模式识别(心理学) 图像(数学) 机器学习 计算机安全 工程类 电信 生物化学 化学 电气工程 基因
作者
Run Wang,Haoxuan Li,Lingzhou Mu,Jixing Ren,Shangwei Guo,Li Liu,Liming Fang,Jing Chen,Lina Wang
标识
DOI:10.1145/3503161.3548390
摘要

Training Deep Neural Networks (DNN) is a time-consuming process and requires a large amount of training data, which motivates studies working on protecting the intellectual property (IP) of DNN models by employing various watermarking techniques. Unfortunately, in recent years, adversaries have been exploiting the vulnerabilities of the employed watermarking techniques to remove the embedded watermarks. In this paper, we investigate and introduce a novel watermark removal attack, called AdvNP, against all the existing four different types of DNN watermarking schemes via input preprocessing by injecting Adversarial Naturalness-aware Perturbations. In contrast to the prior studies, our proposed method is the first work that generalizes all the existing four watermarking schemes well without involving any model modification, which preserves the fidelity of the target model. We conduct the experiments against four state-of-the-art (SOTA) watermarking schemes on two real tasks (e.g., image classification on ImageNet, face recognition on CelebA) across multiple DNN models. Overall, our proposed AdvNP significantly invalidates the watermarks against the four watermarking schemes on two real-world datasets, i.e., 60.9% on the average attack success rate and up to 97% in the worse case. Moreover, our AdvNP could well survive the image denoising techniques and outperforms the baseline in both the fidelity preserving and watermark removal. Furthermore, we introduce two defense methods to enhance the robustness of DNN watermarking against our AdvNP. Our experimental results pose real threats to the existing watermarking schemes and call for more practical and robust watermarking techniques to protect the copyright of pre-trained DNN models. The source code and models are available at ttps://github.com/GitKJ123/AdvNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助黎洛洛采纳,获得10
刚刚
luo发布了新的文献求助10
1秒前
caojj完成签到,获得积分10
1秒前
1秒前
LBR发布了新的文献求助10
2秒前
aa发布了新的文献求助10
2秒前
yszyy23发布了新的文献求助10
2秒前
2秒前
趣乐多完成签到,获得积分10
2秒前
4秒前
css1997完成签到 ,获得积分10
4秒前
星辰完成签到,获得积分10
4秒前
Hu发布了新的文献求助10
5秒前
梁林林完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
梁大海完成签到,获得积分10
6秒前
7秒前
7秒前
kyhzxy完成签到,获得积分20
7秒前
苏紫梗桔发布了新的文献求助10
7秒前
LIUYC发布了新的文献求助10
8秒前
依依完成签到,获得积分10
8秒前
清新的Q发布了新的文献求助10
8秒前
marinzou完成签到,获得积分10
9秒前
梁大海发布了新的文献求助10
9秒前
夬月十三完成签到,获得积分10
10秒前
哒哒发布了新的文献求助10
10秒前
FashionBoy应助量子星尘采纳,获得10
10秒前
认真的觅松完成签到 ,获得积分10
10秒前
昂口3发布了新的文献求助10
12秒前
12秒前
阿喔完成签到,获得积分10
12秒前
luo完成签到,获得积分10
12秒前
aa完成签到,获得积分20
12秒前
陈冲完成签到,获得积分10
13秒前
13秒前
14秒前
睿诺应助MiManchi采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344