Rethinking the Vulnerability of DNN Watermarking

数字水印 水印 计算机科学 稳健性(进化) 忠诚 人工智能 预处理器 脆弱性(计算) 高保真 模式识别(心理学) 图像(数学) 机器学习 计算机安全 工程类 电信 生物化学 化学 电气工程 基因
作者
Run Wang,Haoxuan Li,Lingzhou Mu,Jixing Ren,Shangwei Guo,Li Liu,Liming Fang,Jing Chen,Lina Wang
标识
DOI:10.1145/3503161.3548390
摘要

Training Deep Neural Networks (DNN) is a time-consuming process and requires a large amount of training data, which motivates studies working on protecting the intellectual property (IP) of DNN models by employing various watermarking techniques. Unfortunately, in recent years, adversaries have been exploiting the vulnerabilities of the employed watermarking techniques to remove the embedded watermarks. In this paper, we investigate and introduce a novel watermark removal attack, called AdvNP, against all the existing four different types of DNN watermarking schemes via input preprocessing by injecting Adversarial Naturalness-aware Perturbations. In contrast to the prior studies, our proposed method is the first work that generalizes all the existing four watermarking schemes well without involving any model modification, which preserves the fidelity of the target model. We conduct the experiments against four state-of-the-art (SOTA) watermarking schemes on two real tasks (e.g., image classification on ImageNet, face recognition on CelebA) across multiple DNN models. Overall, our proposed AdvNP significantly invalidates the watermarks against the four watermarking schemes on two real-world datasets, i.e., 60.9% on the average attack success rate and up to 97% in the worse case. Moreover, our AdvNP could well survive the image denoising techniques and outperforms the baseline in both the fidelity preserving and watermark removal. Furthermore, we introduce two defense methods to enhance the robustness of DNN watermarking against our AdvNP. Our experimental results pose real threats to the existing watermarking schemes and call for more practical and robust watermarking techniques to protect the copyright of pre-trained DNN models. The source code and models are available at ttps://github.com/GitKJ123/AdvNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADAO完成签到,获得积分10
刚刚
2秒前
夏季完成签到,获得积分10
3秒前
3秒前
bkagyin应助鱼的宇宙采纳,获得10
3秒前
长情绿凝完成签到,获得积分10
3秒前
3秒前
5秒前
6秒前
7秒前
7秒前
8秒前
在水一方应助MADAO采纳,获得10
8秒前
9秒前
9秒前
10秒前
12秒前
12秒前
冷艳的竺发布了新的文献求助10
12秒前
小猪佩奇完成签到,获得积分10
12秒前
图图完成签到 ,获得积分10
15秒前
王自信发布了新的文献求助10
16秒前
17秒前
18秒前
鱼的宇宙发布了新的文献求助10
18秒前
MishimaErika发布了新的文献求助10
18秒前
18秒前
khr发布了新的文献求助10
19秒前
21秒前
21秒前
小鱼爱吃肉应助幽默尔风采纳,获得10
22秒前
务实的夏菡完成签到,获得积分10
23秒前
小蘑菇应助王自信采纳,获得10
24秒前
25秒前
鱼的宇宙完成签到,获得积分10
26秒前
科研通AI2S应助lxx采纳,获得10
26秒前
29秒前
小药丸完成签到,获得积分10
29秒前
隐形曼青应助郭团团采纳,获得10
30秒前
雪冷完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231