亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rethinking the Vulnerability of DNN Watermarking

数字水印 水印 计算机科学 稳健性(进化) 忠诚 人工智能 预处理器 脆弱性(计算) 高保真 模式识别(心理学) 图像(数学) 机器学习 计算机安全 工程类 电气工程 基因 电信 生物化学 化学
作者
Run Wang,Haoxuan Li,Lingzhou Mu,Jixing Ren,Shangwei Guo,Li Liu,Liming Fang,Jing Chen,Lina Wang
标识
DOI:10.1145/3503161.3548390
摘要

Training Deep Neural Networks (DNN) is a time-consuming process and requires a large amount of training data, which motivates studies working on protecting the intellectual property (IP) of DNN models by employing various watermarking techniques. Unfortunately, in recent years, adversaries have been exploiting the vulnerabilities of the employed watermarking techniques to remove the embedded watermarks. In this paper, we investigate and introduce a novel watermark removal attack, called AdvNP, against all the existing four different types of DNN watermarking schemes via input preprocessing by injecting Adversarial Naturalness-aware Perturbations. In contrast to the prior studies, our proposed method is the first work that generalizes all the existing four watermarking schemes well without involving any model modification, which preserves the fidelity of the target model. We conduct the experiments against four state-of-the-art (SOTA) watermarking schemes on two real tasks (e.g., image classification on ImageNet, face recognition on CelebA) across multiple DNN models. Overall, our proposed AdvNP significantly invalidates the watermarks against the four watermarking schemes on two real-world datasets, i.e., 60.9% on the average attack success rate and up to 97% in the worse case. Moreover, our AdvNP could well survive the image denoising techniques and outperforms the baseline in both the fidelity preserving and watermark removal. Furthermore, we introduce two defense methods to enhance the robustness of DNN watermarking against our AdvNP. Our experimental results pose real threats to the existing watermarking schemes and call for more practical and robust watermarking techniques to protect the copyright of pre-trained DNN models. The source code and models are available at ttps://github.com/GitKJ123/AdvNP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慕青应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
搜集达人应助痴情的诗槐采纳,获得10
5秒前
27秒前
30秒前
乾坤侠客LW完成签到,获得积分10
32秒前
斯文败类应助司空天德采纳,获得10
58秒前
小汽车滴滴滴完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助zzzz采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
zzzz发布了新的文献求助10
1分钟前
1分钟前
超级碧曼应助Wei采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
激动的似狮完成签到,获得积分0
2分钟前
xiaoguai4545完成签到,获得积分10
3分钟前
3分钟前
脑洞疼应助外向白竹采纳,获得10
3分钟前
qkren完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
外向白竹发布了新的文献求助10
5分钟前
5分钟前
外向白竹完成签到,获得积分10
5分钟前
拉长的迎曼完成签到 ,获得积分10
5分钟前
pysa完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
Chris完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
abdo完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788741
求助须知:如何正确求助?哪些是违规求助? 5711548
关于积分的说明 15473875
捐赠科研通 4916750
什么是DOI,文献DOI怎么找? 2646551
邀请新用户注册赠送积分活动 1594225
关于科研通互助平台的介绍 1548651