Meta-learning of personalized thermal comfort model and fast identification of the best personalized thermal environmental conditions

热舒适性 阿什拉1.90 计算机科学 鉴定(生物学) 机器学习 人工智能 暖通空调 反向传播 过程(计算) 模拟 人工神经网络 工程类 空调 机械工程 生物 热力学 操作系统 植物 物理 气象学
作者
Liangliang Chen,Ayca Ermis,Fei Meng,Ying Zhang
出处
期刊:Building and Environment [Elsevier]
卷期号:235: 110201-110201 被引量:8
标识
DOI:10.1016/j.buildenv.2023.110201
摘要

The model of personalized thermal comfort can be learned via various machine learning algorithms and used to improve the individuals' thermal comfort levels with potentially less energy consumption of HVAC systems. However, the learning of such a model typically requires a substantial number of thermal votes from the considered occupant, and the environmental conditions needed for collecting some votes may be undesired by the occupant in order to obtain a model with good generalization ability. In this paper, we propose to use a meta-learning algorithm to reduce the required number of personalized thermal votes so that a personalized thermal comfort model can be obtained with only a small number of feedback. With the learned meta-model, we derive a method based on the backpropagation of neural networks to quickly identify the best environmental and personal conditions for a specific occupant. The proposed identification algorithm has an additional advantage that the thermal comfort, indicated by the mean thermal sensation value, improves incrementally during the data collection process. We use the ASHRAE global thermal comfort database II to verify that the meta-learning algorithm can achieve an improved prediction accuracy after using 5 thermal sensation votes from an occupant to make adaptations. In addition, we show the effectiveness of the fast identification algorithm for the best personalized thermal environmental conditions with a thermal sensation generation model built from the PMV model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
windy发布了新的文献求助10
1秒前
风趣思山完成签到,获得积分20
1秒前
1秒前
Ava应助略略略采纳,获得10
1秒前
Ivy发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
此生不换完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
黄大大发布了新的文献求助10
4秒前
小赵发布了新的文献求助10
4秒前
蜡笔小新完成签到,获得积分10
4秒前
5秒前
5秒前
2010完成签到,获得积分10
5秒前
南桥发布了新的文献求助10
6秒前
6秒前
研友_841KWL完成签到,获得积分10
6秒前
cy完成签到,获得积分10
6秒前
yuanbai应助欢喜蛋挞采纳,获得30
6秒前
朱信姿发布了新的文献求助10
8秒前
NexusExplorer应助yutian采纳,获得10
8秒前
ding应助小太阳采纳,获得10
9秒前
想个昵称怪费劲完成签到,获得积分10
9秒前
UUU完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
hyman1218完成签到,获得积分10
11秒前
rrrrrr发布了新的文献求助10
11秒前
12秒前
雪兔妹妹完成签到,获得积分10
13秒前
mailure完成签到,获得积分10
13秒前
华仔应助完美的皮卡丘采纳,获得10
13秒前
小蘑菇应助王富贵采纳,获得10
15秒前
15秒前
小彻完成签到,获得积分10
15秒前
15秒前
夏天搞科研完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515