Meta-learning of personalized thermal comfort model and fast identification of the best personalized thermal environmental conditions

热舒适性 阿什拉1.90 计算机科学 鉴定(生物学) 机器学习 人工智能 暖通空调 反向传播 过程(计算) 模拟 人工神经网络 工程类 空调 机械工程 生物 热力学 操作系统 植物 物理 气象学
作者
Liangliang Chen,Ayca Ermis,Fei Meng,Ying Zhang
出处
期刊:Building and Environment [Elsevier]
卷期号:235: 110201-110201 被引量:8
标识
DOI:10.1016/j.buildenv.2023.110201
摘要

The model of personalized thermal comfort can be learned via various machine learning algorithms and used to improve the individuals' thermal comfort levels with potentially less energy consumption of HVAC systems. However, the learning of such a model typically requires a substantial number of thermal votes from the considered occupant, and the environmental conditions needed for collecting some votes may be undesired by the occupant in order to obtain a model with good generalization ability. In this paper, we propose to use a meta-learning algorithm to reduce the required number of personalized thermal votes so that a personalized thermal comfort model can be obtained with only a small number of feedback. With the learned meta-model, we derive a method based on the backpropagation of neural networks to quickly identify the best environmental and personal conditions for a specific occupant. The proposed identification algorithm has an additional advantage that the thermal comfort, indicated by the mean thermal sensation value, improves incrementally during the data collection process. We use the ASHRAE global thermal comfort database II to verify that the meta-learning algorithm can achieve an improved prediction accuracy after using 5 thermal sensation votes from an occupant to make adaptations. In addition, we show the effectiveness of the fast identification algorithm for the best personalized thermal environmental conditions with a thermal sensation generation model built from the PMV model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sb完成签到,获得积分10
刚刚
刚刚
科研通AI6应助无情的琳采纳,获得10
1秒前
CipherSage应助不知采纳,获得10
1秒前
wy完成签到,获得积分10
2秒前
2秒前
wanci应助自由妙竹采纳,获得10
3秒前
4秒前
5秒前
姜姜姜完成签到,获得积分10
5秒前
GM发布了新的文献求助10
5秒前
Criminology34应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
qigu发布了新的文献求助10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
枭声应助科研通管家采纳,获得10
7秒前
7秒前
HOAN应助科研通管家采纳,获得30
7秒前
开心的弱应助科研通管家采纳,获得30
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
SJJ应助科研通管家采纳,获得30
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Sea_U应助科研通管家采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060