单重态裂变
离域电子
激发态
单重态
三重态
发光
裂变
原子物理学
化学
化学物理
分子物理学
材料科学
物理
光电子学
核物理学
中子
有机化学
作者
Julian Hausch,Nico Hofeditz,Jona Bredehöft,Sebastian Hammer,Jens Pflaum,Katharina Broch,Marina Gerhard,Frank Schreiber
标识
DOI:10.1021/acs.jpcc.2c08334
摘要
The coherent distribution of an electronic excitation over multiple organic molecules in the solid state, namely excited-state delocalization, plays an important role in photophysical processes such as singlet fission. However, experimental studies of the influence of excited-state delocalization on singlet fission have been challenging mainly for two reasons. First, there is no easy way of measuring the excited-state delocalization, and second, tracking the resulting changes for singlet fission is demanding due to the triplet-pair state, which is a crucial intermediate in singlet fission, being an optically dark state and hence hard to access experimentally. Binary systems offer a way to adapt the growth conditions of a singlet fission material, which enables tuning of the excited-state delocalization, possibly due to the impact of structural disorder on exciton localization. By varying the growth conditions, we demonstrate that emission from the triplet-pair state via Herzberg–Teller coupling is detectable in films with low growth rates of the singlet fission material, while the triplet-pair state shows no luminescence in the other cases due to triplet dissociation outcompeting the luminescent decay. With this we find that triplet-pair state luminescence correlates with higher excited-state delocalization.
科研通智能强力驱动
Strongly Powered by AbleSci AI