烧蚀
材料科学
成像体模
射频消融术
生物医学工程
复合材料
核医学
医学
心脏病学
作者
Hongying Wang,Shiqing Zhao,Jincheng Zou,Aili Zhang
出处
期刊:Bioengineering
[MDPI AG]
日期:2023-01-26
卷期号:10 (2): 162-162
被引量:3
标识
DOI:10.3390/bioengineering10020162
摘要
(1) Background: A combination of radiofrequency (RF) volumetric heating and convection cooling has been proposed to realize plaque ablation while protecting the endothelial layer. However, the depth of the plaque and the thickness of the endothelial layer vary in different atherosclerotic lesions. Current techniques cannot be used to achieve penetrating heating for atherosclerosis with two targets (the specified protection depth and the ablation depth). (2) Methods: A tissue-mimicking phantom heating experiment simulating atherosclerotic plaque ablation was conducted to investigate the effects of the control parameters, the target temperature (Ttarget), the cooling water temperature (Tf), and the cooling water velocity (Vf). To further quantitatively analyze and evaluate the ablation depth and the protection depth of the control parameters, a three-dimensional model was established. In addition, a conformal penetrating heating strategy was proposed based on the numerical results. (3) Results: It was found that Ttarget and Tf were factors that regulated the ablation results, and the temperatures of the plaques varied linearly with Ttarget or Tf. The simulation results showed that the ablation depth increased with the Ttarget while the protection depth decreased correspondently. This relationship reversed with the Tf. When the two parameters Ttarget and Tfwere controlled together, the ablation depth was 0.47 mm-1.43 mm and the protection depth was 0 mm-0.26 mm within 2 min of heating. (4) Conclusions: With the proposed control algorithm, the requirements of both the ablation depth and the endothelium protection depth can be met for most plaques through the simultaneous control of Ttarget and Tf.
科研通智能强力驱动
Strongly Powered by AbleSci AI