A computational fluid dynamics model of seal zone stability in endovascular aneurysm repair

动脉瘤 主动脉 腔内修复术 印章(徽章) 计算流体力学 支架 地质学 放射科 机械 医学 外科 腹主动脉瘤 物理 艺术 视觉艺术
作者
Willa Li,Žiga Donik,Seth Sankary,Nguyen T. Nguyen,Sanjeev Dhara,Janez Kramberger,Kathleen D. Cao,Nhung Nguyen,Luka Pocivavsek
出处
期刊:Biophysical Journal [Elsevier]
卷期号:122 (3): 537a-537a
标识
DOI:10.1016/j.bpj.2022.11.2843
摘要

Aortic aneurysms are pathological dilations of the aorta due to a weakened vessel wall that can quickly become fatal if ruptured. One option for surgical intervention is to perform endovascular aneurysm repair (EVAR) which consists of deploying an expandable endograft across the aneurysm so that blood is redirected through the lumen of the endograft rather than permitted to flow into the aneurysmal sac to cause further pressurization and dilation. The endograft relies upon non-surgical adhesion to the aortic wall at its seal zone to fix the device in place. While EVAR has shown favorable short-term outcomes, long-term durability is impaired due to instability at the seal zone. Specifically, endoleaks often develop in the gap between the undersurface of the stent graft and the vessel wall--termed the bird-beak region--and are clinically presumed to be due to a mismatch between the geometry of the aorta and the endograft. However, we currently lack a rigorous biomechanical understanding of how this geometric incompatibility contributes to endoleak formation and propagation. To investigate the stability of seal zone mechanics, we simulated endograft deployment in computational models of idealized aortic models with different degrees of curvature to replicate bird-beak regions of various sizes. We will then perform computational fluid dynamics (CFD) analyses to characterize the fluid behavior and pressure profile at the seal zone as a function of increasing bird-beak size. These first steps will form the foundation for our future studies where we aim to couple CFD with fluid-structure-fracture simulations to more robustly model the mechanics of endoleaks. By harnessing the power of computational methods, our project seeks to deepen our biomechanical understanding of how endograft selection may affect device failure rates in EVAR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Ava应助侦察兵采纳,获得10
1秒前
1秒前
rookie_b0发布了新的文献求助10
1秒前
邓代容完成签到 ,获得积分10
2秒前
可爱的函函应助南逸然采纳,获得10
2秒前
HiK完成签到,获得积分10
2秒前
gaos发布了新的文献求助10
2秒前
3秒前
外向从灵发布了新的文献求助10
3秒前
3秒前
萌道完成签到,获得积分20
4秒前
thanhmanhp完成签到,获得积分10
4秒前
doudou发布了新的文献求助10
4秒前
4秒前
有风完成签到,获得积分10
4秒前
tk完成签到 ,获得积分10
5秒前
5秒前
大模型应助蜡笔采纳,获得30
5秒前
liu发布了新的文献求助10
5秒前
完美世界应助咳咳采纳,获得10
6秒前
6秒前
哒哒完成签到,获得积分10
6秒前
李健春完成签到 ,获得积分10
6秒前
ding应助小文采纳,获得10
6秒前
6秒前
7秒前
99完成签到,获得积分10
7秒前
隐形曼青应助迅速的夏兰采纳,获得20
7秒前
Muse完成签到 ,获得积分10
8秒前
圈圈发布了新的文献求助10
8秒前
打打应助时尚的蚂蚁采纳,获得10
9秒前
贾文斌完成签到,获得积分10
9秒前
chinning发布了新的文献求助10
9秒前
完美世界应助wangn采纳,获得10
10秒前
Mid完成签到,获得积分20
10秒前
共享精神应助Morgenstern_ZH采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759