Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:55 (08): 701-708 被引量:21
标识
DOI:10.1055/a-2031-0691
摘要

BACKGROUND : Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinqiny完成签到 ,获得积分10
2秒前
Amy完成签到 ,获得积分10
3秒前
lingdang完成签到 ,获得积分10
5秒前
美好乐松应助小龙采纳,获得10
9秒前
顾矜应助卡琳采纳,获得10
14秒前
tianliyan完成签到 ,获得积分10
16秒前
文欣完成签到 ,获得积分10
18秒前
体贴的叛逆者完成签到,获得积分10
20秒前
Young完成签到 ,获得积分10
21秒前
红领巾klj完成签到 ,获得积分10
22秒前
我就想看看文献完成签到 ,获得积分10
23秒前
23秒前
nusiew完成签到,获得积分10
24秒前
卡琳发布了新的文献求助10
28秒前
雍元正完成签到 ,获得积分0
30秒前
cheng完成签到 ,获得积分10
32秒前
35秒前
oaoalaa完成签到 ,获得积分10
39秒前
42秒前
桃桃完成签到 ,获得积分10
43秒前
Wen完成签到 ,获得积分10
44秒前
44秒前
木光发布了新的文献求助10
48秒前
。。完成签到 ,获得积分10
52秒前
guo完成签到 ,获得积分10
52秒前
chen完成签到 ,获得积分10
55秒前
等都到发布了新的文献求助10
1分钟前
1分钟前
Max完成签到 ,获得积分10
1分钟前
风信子deon01完成签到,获得积分10
1分钟前
hw完成签到 ,获得积分10
1分钟前
Supermao完成签到 ,获得积分10
1分钟前
1分钟前
小西完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
savior完成签到 ,获得积分10
1分钟前
英俊的铭应助卡琳采纳,获得10
1分钟前
流星雨完成签到 ,获得积分10
1分钟前
小鱼儿飞飞完成签到,获得积分10
1分钟前
_xySH完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826814
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565