Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:55 (08): 701-708 被引量:36
标识
DOI:10.1055/a-2031-0691
摘要

BACKGROUND : Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
iaskwho发布了新的文献求助10
3秒前
111完成签到,获得积分10
4秒前
4秒前
DarrenVan完成签到,获得积分10
7秒前
英俊的铭应助lk采纳,获得10
7秒前
lucky完成签到 ,获得积分10
7秒前
王国科发布了新的文献求助10
8秒前
高高的天亦完成签到 ,获得积分10
8秒前
小D发布了新的文献求助10
9秒前
村上春树的摩的完成签到 ,获得积分10
9秒前
Fox完成签到,获得积分20
10秒前
11秒前
一一完成签到 ,获得积分10
11秒前
12秒前
ccm应助科研通管家采纳,获得10
13秒前
Bio应助科研通管家采纳,获得150
13秒前
无花果应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
14秒前
ccm应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
dew应助科研通管家采纳,获得10
14秒前
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
馆长应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
今后应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514