Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:55 (08): 701-708 被引量:42
标识
DOI:10.1055/a-2031-0691
摘要

Abstract Background Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. Methods The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. Results The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). Conclusions The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助1820采纳,获得10
刚刚
刚刚
sasa发布了新的文献求助10
刚刚
1秒前
柒玉染完成签到,获得积分10
2秒前
呜呜完成签到,获得积分10
2秒前
2秒前
风清扬发布了新的文献求助10
3秒前
3秒前
CipherSage应助Robin采纳,获得10
3秒前
我爱学习完成签到,获得积分10
4秒前
4秒前
4秒前
木木木完成签到,获得积分10
5秒前
sy完成签到,获得积分10
5秒前
科研通AI6应助子车凡采纳,获得10
5秒前
痴情的白易完成签到 ,获得积分20
6秒前
解解闷发布了新的文献求助10
6秒前
fufufu123完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
微笑的觅夏完成签到 ,获得积分10
7秒前
锅包又完成签到 ,获得积分10
8秒前
李健应助ZZQQ采纳,获得10
8秒前
刘丰铭发布了新的文献求助10
8秒前
8秒前
8秒前
柒玉染发布了新的文献求助10
9秒前
kqkqkqkqkq完成签到,获得积分20
10秒前
阿美完成签到,获得积分10
10秒前
YaRu发布了新的文献求助10
12秒前
12秒前
1820发布了新的文献求助10
13秒前
13秒前
dtcao发布了新的文献求助10
14秒前
14秒前
HuiYmao发布了新的文献求助10
14秒前
华仔应助张瑜采纳,获得10
14秒前
啊火发布了新的文献求助10
15秒前
阿峰完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809