Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:55 (08): 701-708 被引量:42
标识
DOI:10.1055/a-2031-0691
摘要

Abstract Background Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. Methods The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. Results The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). Conclusions The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Li完成签到,获得积分10
1秒前
999完成签到,获得积分10
1秒前
2秒前
笑点低凝荷完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
xuanxuan完成签到 ,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
汕大华瑞喆完成签到,获得积分10
6秒前
香蕉觅云应助HJJHJH采纳,获得10
7秒前
杏子发布了新的文献求助10
7秒前
8秒前
黑米粥发布了新的文献求助10
8秒前
英姑应助风中沛柔采纳,获得30
8秒前
Anqiang发布了新的文献求助10
8秒前
lele完成签到 ,获得积分10
9秒前
9秒前
完美世界应助调皮的巧凡采纳,获得10
12秒前
13秒前
小螃蟹完成签到,获得积分10
13秒前
ding应助Vresty采纳,获得30
17秒前
Bond完成签到 ,获得积分10
17秒前
LEEJ完成签到,获得积分10
18秒前
SciGPT应助张小毛采纳,获得10
18秒前
科研通AI6应助小猪猪采纳,获得30
18秒前
CipherSage应助gdh采纳,获得10
19秒前
传统的数据线完成签到,获得积分10
19秒前
joker完成签到,获得积分10
19秒前
pass发布了新的文献求助10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
科研通AI6应助研友_ndvmV8采纳,获得10
22秒前
钱钱发布了新的文献求助30
22秒前
浮游应助杏子采纳,获得10
23秒前
深情安青应助糊涂的雪旋采纳,获得10
23秒前
23秒前
酷波er应助LEEJ采纳,获得30
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687