已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:55 (08): 701-708 被引量:42
标识
DOI:10.1055/a-2031-0691
摘要

Abstract Background Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. Methods The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. Results The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). Conclusions The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心的面包完成签到,获得积分10
3秒前
4秒前
8R60d8应助非而者厚采纳,获得10
6秒前
6秒前
科研通AI2S应助心信鑫采纳,获得30
6秒前
小小莫发布了新的文献求助10
6秒前
丘比特应助wsyiming采纳,获得20
6秒前
7秒前
8秒前
浮游应助OMG001采纳,获得10
9秒前
Xing完成签到 ,获得积分10
9秒前
hAFMET发布了新的文献求助10
9秒前
sy发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
櫹櫆完成签到 ,获得积分10
12秒前
踏实道之发布了新的文献求助10
13秒前
13秒前
十一完成签到,获得积分10
14秒前
15秒前
15秒前
一区top完成签到 ,获得积分10
17秒前
ZHI发布了新的文献求助10
17秒前
赵文丽发布了新的文献求助10
17秒前
王小雪完成签到,获得积分10
17秒前
诡计多端的臭屁完成签到,获得积分10
18秒前
hAFMET完成签到,获得积分10
18秒前
jjy发布了新的文献求助10
18秒前
haluha给haluha的求助进行了留言
20秒前
21秒前
林夕完成签到 ,获得积分20
23秒前
华仔应助紧张的毛衣采纳,获得100
25秒前
萦22发布了新的文献求助10
26秒前
28秒前
29秒前
隐形曼青应助3111采纳,获得20
29秒前
29秒前
笨笨罡关注了科研通微信公众号
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469625
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336491
捐赠科研通 4499473
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453640
关于科研通互助平台的介绍 1428133