Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:55 (08): 701-708 被引量:42
标识
DOI:10.1055/a-2031-0691
摘要

Abstract Background Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. Methods The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. Results The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). Conclusions The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭6666发布了新的文献求助10
1秒前
完美世界应助留胡子的火采纳,获得10
6秒前
脑洞疼应助郭6666采纳,获得10
6秒前
公冶愚志完成签到,获得积分10
9秒前
威武的皮卡丘完成签到,获得积分10
15秒前
15秒前
15秒前
大龙哥886应助ri_290采纳,获得10
16秒前
sevenhill应助Devastating采纳,获得10
18秒前
18秒前
今后应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得30
19秒前
拼搏应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得20
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
小新应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
鬼切关注了科研通微信公众号
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
scaler完成签到,获得积分10
20秒前
21秒前
xinbowey发布了新的文献求助10
21秒前
xiao完成签到 ,获得积分10
23秒前
24秒前
默默早晨完成签到 ,获得积分10
25秒前
yang发布了新的文献求助10
27秒前
科研通AI6应助Jodie采纳,获得10
29秒前
二次元喵酱完成签到,获得积分10
29秒前
xinbowey完成签到,获得积分10
29秒前
鬼切发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555