CT Radiomics for Predicting Pathological Complete Response of Axillary Lymph Nodes in Breast Cancer After Neoadjuvant Chemotherapy: A Prospective Study

医学 乳腺癌 腋窝淋巴结 新辅助治疗 放射科 前瞻性队列研究 癌症 内科学
作者
Yanling Li,Li-Ze Wang,Qinglei Shi,Yingjian He,Jinfeng Li,Haitao Zhu,Tian-Feng Wang,Xiao-Ting Li,Zhaoqing Fan,Tao Ouyang,Yingshi Sun
出处
期刊:Oncologist [Wiley]
卷期号:28 (4): e183-e190 被引量:9
标识
DOI:10.1093/oncolo/oyad010
摘要

The diagnostic effectiveness of traditional imaging techniques is insufficient to assess the response of lymph nodes (LNs) to neoadjuvant chemotherapy (NAC), especially for pathological complete response (pCR). A radiomics model based on computed tomography (CT) could be helpful.Prospective consecutive breast cancer patients with positive axillary LNs initially were enrolled, who received NAC prior to surgery. Chest contrast-enhanced thin-slice CT scan was performed both before and after the NAC (recorded as the first and the second CT respectively), and on both of them, the target metastatic axillary LN was identified and demarcated layer by layer. Using pyradiomics-based software that was independently created, radiomics features were retrieved. A pairwise machine learning workflow based on Sklearn (https://scikit-learn.org/) and FeAture Explorer was created to increase diagnostic effectiveness. An effective pairwise auto encoder model was developed by the improvement of data normalization, dimensionality reduction, and features screening scheme as well as the comparison of the prediction effectiveness of the various classifiers.A total of 138 patients were enrolled, and 77 (58.7%) in the overall group achieved pCR of LN after NAC. Nine radiomics features were finally chosen for modeling. The AUCs of the training group, validation group, and test group were 0.944 (0.919-0.965), 0.962 (0.937-0.985), and 1.000 (1.000-1.000), respectively, and the corresponding accuracies were 0.891, 0.912, and 1.000.The pCR of axillary LNs in breast cancer following NAC can be precisely predicted using thin-sliced enhanced chest CT-based radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随遇而安发布了新的文献求助10
1秒前
AlvinCZY完成签到,获得积分10
1秒前
1秒前
jameslmr完成签到,获得积分10
1秒前
2秒前
哈哈完成签到,获得积分10
3秒前
科目三应助坎坷采纳,获得10
4秒前
4秒前
xx发布了新的文献求助10
7秒前
搜集达人应助Sahar采纳,获得10
7秒前
星星完成签到,获得积分10
7秒前
8秒前
nenoaowu应助cyy采纳,获得50
8秒前
9秒前
紫霃完成签到,获得积分10
9秒前
10秒前
悦耳迎蕾完成签到,获得积分10
13秒前
科研通AI2S应助此然采纳,获得10
14秒前
nt1119发布了新的文献求助10
14秒前
赘婿应助suanquan采纳,获得10
14秒前
舒心傲蕾完成签到,获得积分10
15秒前
想发sci发布了新的文献求助10
17秒前
dandan完成签到 ,获得积分10
17秒前
斯文败类应助bobopoi采纳,获得10
18秒前
慕青应助独特的凝荷采纳,获得10
21秒前
Eternal发布了新的文献求助10
23秒前
23秒前
23秒前
Hello应助云栈出谷采纳,获得10
24秒前
24秒前
25秒前
27秒前
沉迷完成签到,获得积分10
27秒前
28秒前
28秒前
脑洞疼应助受伤灵薇采纳,获得10
28秒前
28秒前
Xu_W卜完成签到,获得积分10
29秒前
29秒前
Sahar发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352