Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning

重症监护室 排名(信息检索) 计算机科学 人工智能 机器学习 特征(语言学) 接收机工作特性 贝叶斯网络 医学 重症监护医学 语言学 哲学
作者
José A. González-Nóvoa,Silvia Campanioni,Laura Busto,José Fariña,Juan Rodríguez-Andina,Dolores Vila,Andrés Íñiguez,César Veiga
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:20 (4): 3455-3455 被引量:4
标识
DOI:10.3390/ijerph20043455
摘要

It is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today’s hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients’ care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无语的不尤完成签到,获得积分10
1秒前
李东东发布了新的文献求助10
2秒前
2秒前
科研通AI5应助肥仔采纳,获得10
3秒前
Orange应助香蕉纹采纳,获得10
3秒前
hui发布了新的文献求助10
4秒前
suliu发布了新的文献求助30
6秒前
奋斗灯泡发布了新的文献求助10
6秒前
研友_VZG7GZ应助吃菜菜采纳,获得10
6秒前
7秒前
从容的白容完成签到,获得积分10
7秒前
heyi完成签到,获得积分10
8秒前
10秒前
Mry完成签到,获得积分10
11秒前
花痴的早晨完成签到,获得积分10
11秒前
浮游应助陈陈采纳,获得10
11秒前
张文博发布了新的文献求助10
12秒前
13秒前
楠楠完成签到,获得积分10
13秒前
思源应助ohm采纳,获得10
14秒前
善学以致用应助科研小辉采纳,获得10
15秒前
15秒前
CipherSage应助夏炫采纳,获得10
16秒前
16秒前
16秒前
稳重的含灵完成签到,获得积分10
17秒前
万能图书馆应助luckyblue采纳,获得10
17秒前
我是老大应助FleurdelisDZhang采纳,获得10
17秒前
zzh完成签到,获得积分10
17秒前
酷波er应助吃菠萝的桃子采纳,获得10
18秒前
19秒前
lbw完成签到,获得积分10
19秒前
20秒前
香蕉纹发布了新的文献求助10
20秒前
一路向南发布了新的文献求助10
21秒前
Hank发布了新的文献求助30
21秒前
21秒前
22秒前
顾矜应助张文博采纳,获得10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5216056
求助须知:如何正确求助?哪些是违规求助? 4391027
关于积分的说明 13671418
捐赠科研通 4253032
什么是DOI,文献DOI怎么找? 2333551
邀请新用户注册赠送积分活动 1331132
关于科研通互助平台的介绍 1284932