Beyond Individuals: Modeling Mutual and Multiple Interactions for Inductive Link Prediction between Groups

计算机科学 联营 成对比较 链接(几何体) 人工智能 机器学习 群(周期表) 任务(项目管理) 图形 理论计算机科学 计算机网络 化学 管理 有机化学 经济
作者
Gongzhu Yin,Xing Wang,Hongli Zhang,Chao Meng,Yuchen Yang,Kun Lu,Yi Luo
标识
DOI:10.1145/3539597.3570448
摘要

Link prediction is a core task in graph machine learning with wide applications. However, little attention has been paid to link prediction between two group entities. This limits the application of the current approaches to many real-life problems, such as predicting collaborations between academic groups or recommending bundles of items to group users. Moreover, groups are often ephemeral or emergent, forcing the predicting model to deal with challenging inductive scenes. To fill this gap, we develop a framework composed of a GNN-based encoder and neural-based aggregating networks, namely the Mutual Multi-view Attention Networks (MMAN). First, we adopt GNN-based encoders to model multiple interactions among members and groups through propagating. Then, we develop MMAN to aggregate members' node representations into multi-view group representations and compute the final results by pooling pairwise scores between views. Specifically, several view-guided attention modules are adopted when learning multi-view group representations, thus capturing diversified member weights and multifaceted group characteristics. In this way, MMAN can further mimic the mutual and multiple interactions between groups. We conduct experiments on three datasets, including two academic group link prediction datasets and one bundle-to-group recommendation dataset. The results demonstrate that the proposed approach can achieve superior performance on both tasks compared with plain GNN-based methods and other aggregating methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seeyou完成签到 ,获得积分10
1秒前
chenzao完成签到 ,获得积分10
1秒前
2秒前
4秒前
数字生命完成签到,获得积分10
5秒前
6秒前
明亮寒安完成签到,获得积分10
7秒前
7秒前
8秒前
田様应助tangying8642采纳,获得10
8秒前
sumo发布了新的文献求助10
11秒前
维生素完成签到,获得积分10
12秒前
羲合发布了新的文献求助10
12秒前
善学以致用应助ZCL采纳,获得10
14秒前
小巧康完成签到 ,获得积分10
17秒前
tutuee完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
王能能完成签到,获得积分10
21秒前
安子完成签到,获得积分10
21秒前
研友_VZG7GZ应助迟暮采纳,获得10
22秒前
无面男发布了新的文献求助10
23秒前
24秒前
chenshen发布了新的文献求助10
24秒前
哈哈哈哈完成签到 ,获得积分10
25秒前
25秒前
健忘的灵槐完成签到,获得积分10
27秒前
加菲丰丰应助katy采纳,获得20
27秒前
火星上冰绿完成签到,获得积分10
27秒前
ZCL发布了新的文献求助10
28秒前
tangying8642发布了新的文献求助10
29秒前
30秒前
30秒前
彭于晏应助Wlna采纳,获得10
30秒前
黄淮二傻完成签到,获得积分20
31秒前
chenshen完成签到,获得积分10
31秒前
34秒前
无面男完成签到,获得积分10
35秒前
wgcheng发布了新的文献求助30
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388