Self-Supervised Group Graph Collaborative Filtering for Group Recommendation

计算机科学 协同过滤 推荐系统 图形 群(周期表) 机器学习 人工智能 任务(项目管理) 社会团体 情报检索 理论计算机科学 心理学 社会心理学 经济 有机化学 化学 管理
作者
Kang Li,Chang‐Dong Wang,Jianhuang Lai,Huaqiang Yuan
标识
DOI:10.1145/3539597.3570400
摘要

Nowadays, it is more and more convenient for people to participate in group activities. Therefore, providing some recommendations to groups of individuals is indispensable. Group recommendation is the task of suggesting items or events for a group of users in social networks or online communities. In this work, we study group recommendation in a particular scenario, namely occasional group recommendation, which has few or no historical directly interacted items. Existing group recommendation methods mostly adopt attention-based preference aggregation strategies to capture group preferences. However, these models either ignore the complex high-order interactions between groups, users and items or greatly reduce the efficiency by introducing complex data structures. Moreover, occasional group recommendation suffers from the problem of data sparsity due to the lack of historical group-item interactions. In this work, we focus on addressing the aforementioned challenges and propose a novel group recommendation model called Self-Supervised Group Graph Collaborative Filtering (SGGCF). The goal of the model is capturing the high-order interactions between users, items and groups and alleviating the data sparsity issue in an efficient way. First, we explicitly model the complex relationships as a unified user-centered heterogeneous graph and devise a base group recommendation model. Second, we explore self-supervised learning on the graph with two kinds of contrastive learning module to capture the implicit relations between groups and items. At last, we treat the proposed contrastive learning loss as supplementary and apply a multi-task strategy to jointly train the BPR loss and the proposed contrastive learning loss. We conduct extensive experiments on three real-world datasets, and the experimental results demonstrate the superiority of our proposed model in comparison to the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
txmjsn完成签到,获得积分0
刚刚
2秒前
2秒前
3秒前
戴佳伟彩笔完成签到,获得积分10
3秒前
3秒前
科研通AI5应助昵称采纳,获得10
4秒前
伍新发布了新的文献求助10
5秒前
5秒前
ghytrfd发布了新的文献求助30
5秒前
yl完成签到,获得积分10
6秒前
6秒前
encounter发布了新的文献求助10
8秒前
泡泡发布了新的文献求助10
8秒前
Acetonitrile发布了新的文献求助10
9秒前
科研通AI5应助深情元蝶采纳,获得10
12秒前
12秒前
13秒前
FashionBoy应助HYH采纳,获得10
15秒前
15秒前
16秒前
Akim应助稳重幻嫣采纳,获得10
16秒前
18秒前
DrJiang发布了新的文献求助10
20秒前
GL应助辛勤的映波采纳,获得10
20秒前
耍酷冬卉发布了新的文献求助10
20秒前
fluency完成签到,获得积分10
22秒前
long发布了新的文献求助10
23秒前
23秒前
25秒前
爱睡午觉完成签到 ,获得积分10
26秒前
boyeer完成签到,获得积分10
27秒前
七言发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
杳鸢应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482136
求助须知:如何正确求助?哪些是违规求助? 3071971
关于积分的说明 9125149
捐赠科研通 2763750
什么是DOI,文献DOI怎么找? 1516677
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700512