An LSTM-based adaptive prediction control model for the wire diameter control of high-precision optical fiber drawing machines

均方误差 稳健性(进化) 人工神经网络 计算机科学 均方预测误差 光纤 纤维 人工智能 算法 材料科学 数学 统计 电信 复合材料 化学 基因 生物化学
作者
Yang Cao,Yunsheng Qian,Jiawei Zhang,Yanan Wang,Yizheng Lang
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:77: 103267-103267 被引量:2
标识
DOI:10.1016/j.yofte.2023.103267
摘要

Reducing inconsistencies in fiber diameter has always been a focus of research on optical fiber drawing machines (OFDM). Based on an established mathematical model for OFDM, we adopted a long short-term memory (LSTM)-based neural network to predict fiber wire diameter and utilized these results to feedback and control the drawing speed, thereby achieving high precision control of the wire diameter. We trained the proposed network using relevant data from two different fiber drawing processes, allowing it to learn the long-term and short-term correlations in the data. Additionally, we evaluated the performance of the model using root mean square error (RMSE) and R2 as indicators. The experimental results show that network complexity has a considerable impact on the precision of fiber wire diameter prediction. We also established that two LSTM hidden layers with 64 neural units in each layer are the most suitable for the proposed network structure. The network with such a structure has the smallest RMSE value in the validation set and the largest R2 in the testing set. Subsequently, the optimal network structure was used to conduct a multi-timespan wire diameter prediction experiment. According to the experimental results, the LSTM-based wire diameter prediction model still has a satisfactory predictive effect when the time is as long as 50 s, suggesting that the precision and robustness of this network are high. When this method is applied to the actual wire drawing process, the wire diameter error can be controlled to within ± 1.8 μm when the target wire diameter is 0.66 mm, indicating that the wire diameter precision is greatly enhanced. Results indicate that using LSTM-based prediction and control effectively avoids the interference of other factors in the process of wire drawing. Therefore, we remedied the time delay issue of conventional wire diameter control methods. Also, compared with conventional methods, we achieved more precise and robust control of wire diameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助霜降采纳,获得10
1秒前
2秒前
科研通AI5应助过儿采纳,获得10
2秒前
Owen应助Sevi采纳,获得10
2秒前
传奇3应助Sevi采纳,获得10
2秒前
白小纯完成签到,获得积分10
3秒前
徐哗啦完成签到,获得积分10
3秒前
4秒前
北笙发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
Vi发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
阿喵发布了新的文献求助10
8秒前
王晓曼完成签到,获得积分10
9秒前
9秒前
9秒前
lxzhou完成签到 ,获得积分10
9秒前
9秒前
桐桐应助草莓味的榴莲采纳,获得10
10秒前
李w发布了新的文献求助10
11秒前
务实的奇迹完成签到 ,获得积分10
11秒前
清茶韵心发布了新的文献求助10
11秒前
安雯完成签到,获得积分20
12秒前
12秒前
zzc张晨发布了新的文献求助50
12秒前
13秒前
13秒前
徐哈哈完成签到,获得积分10
14秒前
霜降发布了新的文献求助10
14秒前
科研通AI2S应助H_Hou采纳,获得10
14秒前
cc发布了新的文献求助10
14秒前
妙妙完成签到,获得积分10
15秒前
安雯发布了新的文献求助30
15秒前
我是老大应助Vi采纳,获得10
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148