已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An LSTM-based adaptive prediction control model for the wire diameter control of high-precision optical fiber drawing machines

均方误差 稳健性(进化) 人工神经网络 计算机科学 均方预测误差 光纤 纤维 人工智能 算法 材料科学 数学 统计 电信 复合材料 化学 基因 生物化学
作者
Yang Cao,Yunsheng Qian,Jiawei Zhang,Yanan Wang,Yizheng Lang
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:77: 103267-103267 被引量:2
标识
DOI:10.1016/j.yofte.2023.103267
摘要

Reducing inconsistencies in fiber diameter has always been a focus of research on optical fiber drawing machines (OFDM). Based on an established mathematical model for OFDM, we adopted a long short-term memory (LSTM)-based neural network to predict fiber wire diameter and utilized these results to feedback and control the drawing speed, thereby achieving high precision control of the wire diameter. We trained the proposed network using relevant data from two different fiber drawing processes, allowing it to learn the long-term and short-term correlations in the data. Additionally, we evaluated the performance of the model using root mean square error (RMSE) and R2 as indicators. The experimental results show that network complexity has a considerable impact on the precision of fiber wire diameter prediction. We also established that two LSTM hidden layers with 64 neural units in each layer are the most suitable for the proposed network structure. The network with such a structure has the smallest RMSE value in the validation set and the largest R2 in the testing set. Subsequently, the optimal network structure was used to conduct a multi-timespan wire diameter prediction experiment. According to the experimental results, the LSTM-based wire diameter prediction model still has a satisfactory predictive effect when the time is as long as 50 s, suggesting that the precision and robustness of this network are high. When this method is applied to the actual wire drawing process, the wire diameter error can be controlled to within ± 1.8 μm when the target wire diameter is 0.66 mm, indicating that the wire diameter precision is greatly enhanced. Results indicate that using LSTM-based prediction and control effectively avoids the interference of other factors in the process of wire drawing. Therefore, we remedied the time delay issue of conventional wire diameter control methods. Also, compared with conventional methods, we achieved more precise and robust control of wire diameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ckl完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
5秒前
namseok发布了新的文献求助10
6秒前
7秒前
xc完成签到,获得积分10
7秒前
7秒前
7秒前
刘倩完成签到 ,获得积分10
8秒前
kd1412完成签到 ,获得积分10
9秒前
所所应助牙牙采纳,获得10
9秒前
10秒前
11秒前
jiang发布了新的文献求助10
11秒前
cjj发布了新的文献求助10
12秒前
12秒前
13秒前
风清扬应助麻瓜采纳,获得30
13秒前
白羊完成签到,获得积分10
16秒前
17秒前
鸭鸭完成签到,获得积分10
17秒前
qq完成签到,获得积分10
17秒前
夜无疆发布了新的文献求助10
19秒前
咩咩发布了新的文献求助30
20秒前
浮游应助xiu采纳,获得10
20秒前
隐形曼青应助lililili采纳,获得10
21秒前
21秒前
白羊发布了新的文献求助10
23秒前
23秒前
24秒前
可爱的妖丽完成签到,获得积分10
24秒前
尤寄风发布了新的文献求助10
24秒前
25秒前
26秒前
徐伟利完成签到 ,获得积分10
28秒前
宇宙大静默完成签到 ,获得积分10
28秒前
28秒前
nkdailingyun发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197046
求助须知:如何正确求助?哪些是违规求助? 4378441
关于积分的说明 13636319
捐赠科研通 4234134
什么是DOI,文献DOI怎么找? 2322555
邀请新用户注册赠送积分活动 1320688
关于科研通互助平台的介绍 1271277