An LSTM-based adaptive prediction control model for the wire diameter control of high-precision optical fiber drawing machines

均方误差 稳健性(进化) 人工神经网络 计算机科学 均方预测误差 光纤 纤维 人工智能 算法 材料科学 数学 统计 电信 复合材料 生物化学 化学 基因
作者
Yang Cao,Yunsheng Qian,Jiawei Zhang,Yanan Wang,Yizheng Lang
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:77: 103267-103267 被引量:2
标识
DOI:10.1016/j.yofte.2023.103267
摘要

Reducing inconsistencies in fiber diameter has always been a focus of research on optical fiber drawing machines (OFDM). Based on an established mathematical model for OFDM, we adopted a long short-term memory (LSTM)-based neural network to predict fiber wire diameter and utilized these results to feedback and control the drawing speed, thereby achieving high precision control of the wire diameter. We trained the proposed network using relevant data from two different fiber drawing processes, allowing it to learn the long-term and short-term correlations in the data. Additionally, we evaluated the performance of the model using root mean square error (RMSE) and R2 as indicators. The experimental results show that network complexity has a considerable impact on the precision of fiber wire diameter prediction. We also established that two LSTM hidden layers with 64 neural units in each layer are the most suitable for the proposed network structure. The network with such a structure has the smallest RMSE value in the validation set and the largest R2 in the testing set. Subsequently, the optimal network structure was used to conduct a multi-timespan wire diameter prediction experiment. According to the experimental results, the LSTM-based wire diameter prediction model still has a satisfactory predictive effect when the time is as long as 50 s, suggesting that the precision and robustness of this network are high. When this method is applied to the actual wire drawing process, the wire diameter error can be controlled to within ± 1.8 μm when the target wire diameter is 0.66 mm, indicating that the wire diameter precision is greatly enhanced. Results indicate that using LSTM-based prediction and control effectively avoids the interference of other factors in the process of wire drawing. Therefore, we remedied the time delay issue of conventional wire diameter control methods. Also, compared with conventional methods, we achieved more precise and robust control of wire diameter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨小鸿发布了新的文献求助10
刚刚
刚刚
kingsbro-xu完成签到,获得积分20
3秒前
科研通AI6.1应助三更笔舞采纳,获得10
4秒前
猫猫侠完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
炙热面包完成签到,获得积分10
11秒前
冰与火发布了新的文献求助20
13秒前
spc68应助xuan采纳,获得10
13秒前
Nara2021发布了新的文献求助20
13秒前
不要慌完成签到 ,获得积分10
13秒前
大个应助杨小鸿采纳,获得10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
香香完成签到,获得积分10
17秒前
栀子花开XIXI完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
Suttier完成签到 ,获得积分10
21秒前
SciGPT应助lilililia采纳,获得10
21秒前
对称破缺完成签到,获得积分10
22秒前
小呆子发布了新的文献求助10
23秒前
失眠霸完成签到,获得积分10
23秒前
23秒前
叮叮当当发布了新的文献求助200
23秒前
23秒前
24秒前
24秒前
26秒前
溪水哗哗发布了新的文献求助10
26秒前
27秒前
迷人的贻完成签到,获得积分10
27秒前
小星星完成签到 ,获得积分10
28秒前
浮云发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978