An LSTM-based adaptive prediction control model for the wire diameter control of high-precision optical fiber drawing machines

均方误差 稳健性(进化) 人工神经网络 计算机科学 均方预测误差 光纤 纤维 人工智能 算法 材料科学 数学 统计 电信 复合材料 化学 基因 生物化学
作者
Yang Cao,Yunsheng Qian,Jiawei Zhang,Yanan Wang,Yizheng Lang
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:77: 103267-103267 被引量:2
标识
DOI:10.1016/j.yofte.2023.103267
摘要

Reducing inconsistencies in fiber diameter has always been a focus of research on optical fiber drawing machines (OFDM). Based on an established mathematical model for OFDM, we adopted a long short-term memory (LSTM)-based neural network to predict fiber wire diameter and utilized these results to feedback and control the drawing speed, thereby achieving high precision control of the wire diameter. We trained the proposed network using relevant data from two different fiber drawing processes, allowing it to learn the long-term and short-term correlations in the data. Additionally, we evaluated the performance of the model using root mean square error (RMSE) and R2 as indicators. The experimental results show that network complexity has a considerable impact on the precision of fiber wire diameter prediction. We also established that two LSTM hidden layers with 64 neural units in each layer are the most suitable for the proposed network structure. The network with such a structure has the smallest RMSE value in the validation set and the largest R2 in the testing set. Subsequently, the optimal network structure was used to conduct a multi-timespan wire diameter prediction experiment. According to the experimental results, the LSTM-based wire diameter prediction model still has a satisfactory predictive effect when the time is as long as 50 s, suggesting that the precision and robustness of this network are high. When this method is applied to the actual wire drawing process, the wire diameter error can be controlled to within ± 1.8 μm when the target wire diameter is 0.66 mm, indicating that the wire diameter precision is greatly enhanced. Results indicate that using LSTM-based prediction and control effectively avoids the interference of other factors in the process of wire drawing. Therefore, we remedied the time delay issue of conventional wire diameter control methods. Also, compared with conventional methods, we achieved more precise and robust control of wire diameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
JamesPei应助健壮的以莲采纳,获得10
2秒前
3秒前
小汪发布了新的文献求助10
3秒前
实验员小春完成签到,获得积分20
4秒前
大文字发布了新的文献求助10
5秒前
木子发布了新的文献求助10
6秒前
8秒前
活力惜寒完成签到,获得积分10
11秒前
七七丫完成签到,获得积分10
11秒前
元元完成签到,获得积分20
12秒前
star完成签到 ,获得积分10
13秒前
偷乐发布了新的文献求助10
14秒前
小汪完成签到,获得积分10
15秒前
美亲发布了新的文献求助10
16秒前
刘文宇发布了新的文献求助10
17秒前
ymh完成签到 ,获得积分10
17秒前
Sew东坡完成签到,获得积分10
18秒前
天天快乐应助1111采纳,获得10
18秒前
大文字完成签到,获得积分10
18秒前
里巷完成签到,获得积分10
18秒前
20秒前
元元发布了新的文献求助10
20秒前
小乐完成签到 ,获得积分10
21秒前
俏皮慕凝完成签到,获得积分10
21秒前
雪花驳回了情怀应助
21秒前
22秒前
22秒前
24秒前
111发布了新的文献求助10
25秒前
ymh关注了科研通微信公众号
25秒前
断数循环应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014