EEG emotion recognition using improved graph neural network with channel selection

计算机科学 脑电图 人工智能 图形 卷积(计算机科学) 模式识别(心理学) 频道(广播) 卷积神经网络 机器学习 特征选择 人工神经网络 理论计算机科学 心理学 计算机网络 精神科
作者
Xuefen Lin,Jielin Chen,Weifeng Ma,Wei Tang,Yuchen Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107380-107380 被引量:38
标识
DOI:10.1016/j.cmpb.2023.107380
摘要

Emotion classification tasks based on electroencephalography (EEG) are an essential part of artificial intelligence, with promising applications in healthcare areas such as autism research and emotion detection in pregnant women. However, the complex data acquisition environment provides a variable number of EEG channels, which interferes with the model to simulate the process of information transfer in the human brain. Therefore, this paper proposes an improved graph convolution model with dynamic channel selection.The proposed model combines the advantages of 1D convolution and graph convolution to capture the intra- and inter-channel EEG features, respectively. We add functional connectivity in the graph structure that helps to simulate the relationship between brain regions further. In addition, an adjustable scale of channel selection can be performed based on the attention distribution in the graph structure.We conducted various experiments on the DEAP-Twente, DEAP-Geneva, and SEED datasets and achieved average accuracies of 90.74%, 91%, and 90.22%, respectively, which exceeded most existing models. Meanwhile, with only 20% of the EEG channels retained, the models achieved average accuracies of 82.78%, 84%, and 83.93% on the above three datasets, respectively.The experimental results show that the proposed model can achieve effective emotion classification in complex dataset environments. Also, the proposed channel selection method is informative for reducing the cost of affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOLO完成签到 ,获得积分10
刚刚
JamesPei应助tingting采纳,获得10
2秒前
受伤的老头完成签到,获得积分10
2秒前
hoongyan完成签到 ,获得积分10
5秒前
乐观又lucky完成签到,获得积分10
5秒前
8秒前
9秒前
10秒前
tingting发布了新的文献求助10
13秒前
秋雅发布了新的文献求助10
14秒前
16秒前
深情安青应助俊逸的刺猬采纳,获得30
18秒前
大模型应助Christina采纳,获得10
19秒前
21秒前
早睡早起健康长寿完成签到,获得积分10
22秒前
冷静剑成完成签到,获得积分10
22秒前
东方天奇发布了新的文献求助10
23秒前
怕孤单的Hannah完成签到 ,获得积分10
24秒前
苗老九完成签到,获得积分10
25秒前
善学以致用应助里海怪物采纳,获得10
25秒前
不可以再驼背完成签到,获得积分10
26秒前
27秒前
叁金完成签到,获得积分10
27秒前
28秒前
29秒前
32秒前
Frisk12sfs发布了新的文献求助10
32秒前
袁青欣完成签到 ,获得积分10
32秒前
爱做实验的泡利完成签到,获得积分10
34秒前
慕青应助Frisk12sfs采纳,获得10
38秒前
眼睛大的一斩完成签到,获得积分20
39秒前
41秒前
城南完成签到 ,获得积分10
42秒前
zhenghongdan发布了新的文献求助10
42秒前
42秒前
宇文雅琴完成签到,获得积分10
42秒前
Orange应助sam采纳,获得30
43秒前
46秒前
47秒前
Jasper应助Jiaxiao采纳,获得10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194