亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model

健康状况 可靠性工程 稳健性(进化) 电池(电) 可靠性(半导体) 计算机科学 数据挖掘 工程类 化学 功率(物理) 生物化学 物理 量子力学 基因
作者
Cheng Qian,Binghui Xu,Quan Xia,Yi Ren,Bo Sun,Zili Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:336: 120793-120793 被引量:32
标识
DOI:10.1016/j.apenergy.2023.120793
摘要

Accurate state of health (SOH) prediction is essential for lithium-ion batteries from the perspectives of safety and reliability. However, most existing data-driven methods only take the historical state information of a battery (e.g., its historical SOHs) as input. Considering that the future SOH degradation trends of lithium-ion batteries are highly affected by future loads, a new SOH prediction method that takes both historical state information and future load information as inputs is developed for batteries operating under dynamic loading conditions. To integrate these two types of information, an attention-based multisource sequence-to-sequence (AM-seq2seq) model consisting of two encoders and one decoder is built. Within this structure, advanced attention layers are employed to learn the global dependencies between the target SOH predictions and the model inputs. For the purpose of the validation, two case studies are conducted under different discharge currents and different ambient temperatures, respectively. It is shown that the proposed AM-seq2seq model is capable to provide accurate long-term SOH predictions for all of the cases with different future loads and beginnings of prediction (BOPs). Moreover, it also exhibits great robustness against various historical state input and future load input lengths. As a result, the proposed AM-seq2seq model is feasible for adaptively predicting the SOHs of batteries under different future loads with limited historical SOHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tarrsy发布了新的文献求助30
3秒前
远坂时辰发布了新的文献求助10
4秒前
archer01发布了新的文献求助10
6秒前
科研通AI2S应助霸气乐菱采纳,获得10
8秒前
11秒前
cxlcxl发布了新的文献求助10
16秒前
17秒前
19秒前
栀初发布了新的文献求助10
22秒前
25秒前
29秒前
JavedAli完成签到,获得积分10
30秒前
31秒前
cxlcxl完成签到,获得积分20
32秒前
33秒前
39秒前
39秒前
44秒前
凶狠的秀发完成签到,获得积分20
46秒前
干净的芮完成签到,获得积分10
49秒前
淡然的咖啡豆完成签到 ,获得积分10
55秒前
小旭不会飞完成签到,获得积分10
55秒前
56秒前
57秒前
小马甲应助科研通管家采纳,获得10
57秒前
英俊的铭应助科研通管家采纳,获得10
57秒前
57秒前
59秒前
59秒前
59秒前
pppshoot发布了新的文献求助10
1分钟前
捡垃圾的小破烂完成签到,获得积分10
1分钟前
京羊完成签到 ,获得积分10
1分钟前
岳莹晓完成签到 ,获得积分10
1分钟前
1分钟前
数值分析完成签到 ,获得积分10
1分钟前
FyNic发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307266
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500041
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382