SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model

健康状况 可靠性工程 稳健性(进化) 电池(电) 可靠性(半导体) 计算机科学 序列(生物学) 数据挖掘 工程类 化学 生物化学 量子力学 基因 物理 功率(物理)
作者
Cheng Qian,Binghui Xu,Quan Xia,Yi Ren,Bo Sun,Zili Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:336: 120793-120793 被引量:73
标识
DOI:10.1016/j.apenergy.2023.120793
摘要

Accurate state of health (SOH) prediction is essential for lithium-ion batteries from the perspectives of safety and reliability. However, most existing data-driven methods only take the historical state information of a battery (e.g., its historical SOHs) as input. Considering that the future SOH degradation trends of lithium-ion batteries are highly affected by future loads, a new SOH prediction method that takes both historical state information and future load information as inputs is developed for batteries operating under dynamic loading conditions. To integrate these two types of information, an attention-based multisource sequence-to-sequence (AM-seq2seq) model consisting of two encoders and one decoder is built. Within this structure, advanced attention layers are employed to learn the global dependencies between the target SOH predictions and the model inputs. For the purpose of the validation, two case studies are conducted under different discharge currents and different ambient temperatures, respectively. It is shown that the proposed AM-seq2seq model is capable to provide accurate long-term SOH predictions for all of the cases with different future loads and beginnings of prediction (BOPs). Moreover, it also exhibits great robustness against various historical state input and future load input lengths. As a result, the proposed AM-seq2seq model is feasible for adaptively predicting the SOHs of batteries under different future loads with limited historical SOHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lonelylong完成签到,获得积分10
1秒前
缥缈的仰完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
顾矜应助小火车采纳,获得10
2秒前
南亭发布了新的文献求助10
2秒前
wang发布了新的文献求助10
4秒前
lonelylong发布了新的文献求助30
5秒前
小姜完成签到 ,获得积分10
5秒前
无私的发卡完成签到,获得积分10
6秒前
科研通AI6应助SK采纳,获得10
7秒前
FashionBoy应助lf采纳,获得10
7秒前
7秒前
9秒前
在水一方应助nn采纳,获得10
9秒前
默默荔枝发布了新的文献求助30
9秒前
马一凡完成签到,获得积分0
10秒前
yoyo20012623完成签到,获得积分10
10秒前
浮游应助秋风暖暖采纳,获得30
11秒前
汉堡包应助大佬求文献采纳,获得30
11秒前
yyy完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
爱科研的光催人完成签到,获得积分10
12秒前
搜集达人应助minifox采纳,获得10
12秒前
一个靓仔应助A2M1采纳,获得10
13秒前
拒绝emo完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
18秒前
18秒前
传奇3应助CC采纳,获得10
19秒前
nn发布了新的文献求助10
20秒前
lf发布了新的文献求助10
20秒前
开心的三毒完成签到,获得积分10
22秒前
小吕快跑完成签到,获得积分10
23秒前
踩点行动完成签到,获得积分10
23秒前
高飞给高飞的求助进行了留言
23秒前
23秒前
gww发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950877
求助须知:如何正确求助?哪些是违规求助? 4213567
关于积分的说明 13105023
捐赠科研通 3995465
什么是DOI,文献DOI怎么找? 2186928
邀请新用户注册赠送积分活动 1202156
关于科研通互助平台的介绍 1115421