SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model

健康状况 可靠性工程 稳健性(进化) 电池(电) 可靠性(半导体) 计算机科学 序列(生物学) 数据挖掘 工程类 化学 生物化学 量子力学 基因 物理 功率(物理)
作者
Cheng Qian,Binghui Xu,Quan Xia,Yi Ren,Bo Sun,Zili Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:336: 120793-120793 被引量:83
标识
DOI:10.1016/j.apenergy.2023.120793
摘要

Accurate state of health (SOH) prediction is essential for lithium-ion batteries from the perspectives of safety and reliability. However, most existing data-driven methods only take the historical state information of a battery (e.g., its historical SOHs) as input. Considering that the future SOH degradation trends of lithium-ion batteries are highly affected by future loads, a new SOH prediction method that takes both historical state information and future load information as inputs is developed for batteries operating under dynamic loading conditions. To integrate these two types of information, an attention-based multisource sequence-to-sequence (AM-seq2seq) model consisting of two encoders and one decoder is built. Within this structure, advanced attention layers are employed to learn the global dependencies between the target SOH predictions and the model inputs. For the purpose of the validation, two case studies are conducted under different discharge currents and different ambient temperatures, respectively. It is shown that the proposed AM-seq2seq model is capable to provide accurate long-term SOH predictions for all of the cases with different future loads and beginnings of prediction (BOPs). Moreover, it also exhibits great robustness against various historical state input and future load input lengths. As a result, the proposed AM-seq2seq model is feasible for adaptively predicting the SOHs of batteries under different future loads with limited historical SOHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
4秒前
水心发布了新的文献求助30
5秒前
苗小天发布了新的文献求助10
5秒前
浮游应助Chany采纳,获得10
6秒前
想睡觉的小笼包完成签到 ,获得积分10
7秒前
yiyishenghui2025完成签到,获得积分10
8秒前
烟花应助fffF采纳,获得10
9秒前
英吉利25发布了新的文献求助10
9秒前
叮咚发布了新的文献求助10
10秒前
Hello应助黎L采纳,获得10
12秒前
深情安青应助鄢亮采纳,获得10
12秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
13秒前
wuyuan完成签到,获得积分10
14秒前
小达人完成签到 ,获得积分10
15秒前
薰衣草发布了新的文献求助10
17秒前
17秒前
18秒前
平淡鞋子给平淡鞋子的求助进行了留言
20秒前
cxy完成签到 ,获得积分10
20秒前
21秒前
21秒前
在水一方应助活泼的飞扬采纳,获得10
23秒前
隐形曼青应助lu采纳,获得10
23秒前
24秒前
水心发布了新的文献求助50
24秒前
25秒前
Ya发布了新的文献求助10
26秒前
27秒前
28秒前
liudongling完成签到,获得积分10
29秒前
科研通AI2S应助破晓星采纳,获得10
30秒前
30秒前
善学以致用应助lzcnextdoor采纳,获得10
30秒前
31秒前
紧张的新烟完成签到,获得积分10
32秒前
32秒前
鄢亮发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592