SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model

健康状况 可靠性工程 稳健性(进化) 电池(电) 可靠性(半导体) 计算机科学 序列(生物学) 数据挖掘 工程类 化学 生物化学 量子力学 基因 物理 功率(物理)
作者
Cheng Qian,Binghui Xu,Quan Xia,Yi Ren,Bo Sun,Zili Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:336: 120793-120793 被引量:55
标识
DOI:10.1016/j.apenergy.2023.120793
摘要

Accurate state of health (SOH) prediction is essential for lithium-ion batteries from the perspectives of safety and reliability. However, most existing data-driven methods only take the historical state information of a battery (e.g., its historical SOHs) as input. Considering that the future SOH degradation trends of lithium-ion batteries are highly affected by future loads, a new SOH prediction method that takes both historical state information and future load information as inputs is developed for batteries operating under dynamic loading conditions. To integrate these two types of information, an attention-based multisource sequence-to-sequence (AM-seq2seq) model consisting of two encoders and one decoder is built. Within this structure, advanced attention layers are employed to learn the global dependencies between the target SOH predictions and the model inputs. For the purpose of the validation, two case studies are conducted under different discharge currents and different ambient temperatures, respectively. It is shown that the proposed AM-seq2seq model is capable to provide accurate long-term SOH predictions for all of the cases with different future loads and beginnings of prediction (BOPs). Moreover, it also exhibits great robustness against various historical state input and future load input lengths. As a result, the proposed AM-seq2seq model is feasible for adaptively predicting the SOHs of batteries under different future loads with limited historical SOHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的小玉完成签到,获得积分10
刚刚
威武画板完成签到 ,获得积分10
1秒前
1秒前
1351274922发布了新的文献求助10
1秒前
暮寻屿苗完成签到 ,获得积分10
1秒前
2秒前
吧啦吧啦吧啦完成签到,获得积分10
2秒前
风姿物语完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
zxj完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
msp发布了新的文献求助10
7秒前
风中道罡发布了新的文献求助10
8秒前
丫丫完成签到,获得积分10
8秒前
wendinfgmei完成签到,获得积分10
9秒前
9秒前
哈h发布了新的文献求助10
9秒前
9秒前
9秒前
weber完成签到,获得积分10
10秒前
elgar612发布了新的文献求助10
10秒前
11秒前
也许飞鸟能到那个木屋完成签到,获得积分10
11秒前
阳生完成签到,获得积分10
11秒前
朝花夕拾完成签到,获得积分10
11秒前
11秒前
芝士椰果完成签到,获得积分10
12秒前
elliot完成签到,获得积分10
12秒前
13秒前
13秒前
伍思光完成签到,获得积分10
13秒前
谜记完成签到,获得积分10
14秒前
Ning00000完成签到 ,获得积分10
14秒前
JJ完成签到,获得积分10
14秒前
RR完成签到,获得积分10
14秒前
球球发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957265
求助须知:如何正确求助?哪些是违规求助? 3503314
关于积分的说明 11112746
捐赠科研通 3234499
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330