SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model

健康状况 可靠性工程 稳健性(进化) 电池(电) 可靠性(半导体) 计算机科学 序列(生物学) 数据挖掘 工程类 化学 生物化学 量子力学 基因 物理 功率(物理)
作者
Cheng Qian,Binghui Xu,Quan Xia,Yi Ren,Bo Sun,Zili Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:336: 120793-120793 被引量:83
标识
DOI:10.1016/j.apenergy.2023.120793
摘要

Accurate state of health (SOH) prediction is essential for lithium-ion batteries from the perspectives of safety and reliability. However, most existing data-driven methods only take the historical state information of a battery (e.g., its historical SOHs) as input. Considering that the future SOH degradation trends of lithium-ion batteries are highly affected by future loads, a new SOH prediction method that takes both historical state information and future load information as inputs is developed for batteries operating under dynamic loading conditions. To integrate these two types of information, an attention-based multisource sequence-to-sequence (AM-seq2seq) model consisting of two encoders and one decoder is built. Within this structure, advanced attention layers are employed to learn the global dependencies between the target SOH predictions and the model inputs. For the purpose of the validation, two case studies are conducted under different discharge currents and different ambient temperatures, respectively. It is shown that the proposed AM-seq2seq model is capable to provide accurate long-term SOH predictions for all of the cases with different future loads and beginnings of prediction (BOPs). Moreover, it also exhibits great robustness against various historical state input and future load input lengths. As a result, the proposed AM-seq2seq model is feasible for adaptively predicting the SOHs of batteries under different future loads with limited historical SOHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助yan采纳,获得10
刚刚
刚刚
刚刚
1秒前
脱下长衫的孔乙己完成签到,获得积分20
1秒前
2秒前
Serendipity发布了新的文献求助10
2秒前
柠檬发布了新的文献求助10
3秒前
Yuanfxz发布了新的文献求助10
3秒前
悦耳的襄发布了新的文献求助100
3秒前
peachhhh发布了新的文献求助10
3秒前
4秒前
4秒前
桐桐应助Nemo采纳,获得10
4秒前
Hello应助薇w采纳,获得10
4秒前
zgaolei完成签到,获得积分10
4秒前
轻松的囧完成签到,获得积分10
4秒前
任性映秋发布了新的文献求助10
5秒前
syjjj完成签到,获得积分10
5秒前
5秒前
5秒前
1234发布了新的文献求助10
6秒前
6秒前
wise111发布了新的文献求助10
6秒前
闪闪的白梅完成签到,获得积分10
6秒前
WWW发布了新的文献求助10
7秒前
鲜于枫完成签到,获得积分10
7秒前
干净绮山发布了新的文献求助10
7秒前
lalll发布了新的文献求助10
8秒前
ruirui发布了新的文献求助10
8秒前
xxt发布了新的文献求助10
8秒前
8秒前
9秒前
Ally发布了新的文献求助10
9秒前
10秒前
yumieer完成签到,获得积分10
11秒前
11秒前
zhq发布了新的文献求助10
12秒前
12秒前
领导范儿应助哈哈哈哈采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921