Atomic mechanism of lithium dendrite penetration in solid electrolytes

渗透(战争) 枝晶(数学) 电解质 材料科学 快离子导体 锂(药物) 机制(生物学) 化学工程 纳米技术 生物物理学 化学 物理化学 医学 电极 生物 物理 几何学 数学 运筹学 量子力学 工程类 内分泌学
作者
Bowen Zhang,Botao Yuan,Xin Yan,Xiao Han,Jiawei Zhang,Huifeng Tan,Cheng Wang,Pengfei Yan,Huajian Gao,Yuanpeng Liu
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-57259-x
摘要

Lithium dendrite penetration through ceramic electrolytes is known to result in mechanical failure and short circuits, which has impeded the commercialization of all-solid-state lithium anode batteries. However, the underlying mechanism still remains under debate, due in part to a lack of in situ atomic-level observations of the dendrite penetration process. Here, we employ molecular dynamics simulations to reproduce the dynamic process of dendrite nucleation and penetration. Our findings reveal that dynamically generated lithium depositions lead to a continuous accumulation of internal stress, culminating in fracture of the solid electrolyte at dendrite tips. We demonstrate that the classical Griffith theory remains effective in assessing this fracture mode, but it is necessary to consider the electrochemical impact of local lithium ion concentration on the fracture toughness. Additionally, in polycrystalline solid electrolytes, we observe that dendrite nuclei within grains typically deflect towards and propagate along grain boundaries. Simulations and experimental evidence both identify that dendrite induced fractures at grain boundaries exhibit a mixed Mode I and Mode II pattern, contingent on their fracture toughness and the angle between dendrites and grain boundaries. These insights deepen our understanding of dendrite penetration mechanisms and may offer valuable guidance for improving the performance of solid electrolytes. The underlying mechanism of lithium dendrite penetration through ceramic electrolytes is debated. Here, authors employ MD simulations to enable atomic-scale investigation in the process of dendrite penetration and the concurrent development of cracks during solid state lithium battery operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幺雀发布了新的文献求助30
刚刚
哇哇叫完成签到,获得积分10
1秒前
2秒前
plummin完成签到,获得积分10
3秒前
上官若男应助zwenng采纳,获得10
3秒前
3秒前
wuludie应助xuyingtao采纳,获得10
4秒前
SYLH应助kx采纳,获得10
5秒前
杏仁完成签到,获得积分10
5秒前
6秒前
yinhe028完成签到,获得积分10
6秒前
零碎的岛屿应助伶俐冷卉采纳,获得10
6秒前
科研通AI5应助研小白采纳,获得10
7秒前
小蘑菇应助杰瑞采纳,获得10
7秒前
丝垚完成签到 ,获得积分10
7秒前
plummin发布了新的文献求助10
7秒前
活力凡雁完成签到 ,获得积分10
8秒前
小树苗发布了新的文献求助10
9秒前
H华ua应助想飞的猪采纳,获得10
9秒前
zxf发布了新的文献求助10
10秒前
10秒前
hadfunsix完成签到 ,获得积分10
10秒前
takiku发布了新的文献求助10
11秒前
CodeCraft应助zdtcv采纳,获得10
11秒前
13秒前
Bluebulu完成签到,获得积分10
14秒前
xuyingtao完成签到,获得积分10
14秒前
Orange应助比巴卜采纳,获得10
15秒前
zxf完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
qianhuxinyu发布了新的文献求助10
18秒前
Eid完成签到,获得积分10
18秒前
完美世界应助阿难采纳,获得10
18秒前
暴富发布了新的文献求助10
20秒前
SXR完成签到,获得积分10
20秒前
科研通AI5应助我行我素采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961