亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human-Algorithm Collaboration with Private Information: Naïve Advice-Weighting Behavior and Mitigation

建议(编程) 加权 计算机科学 私人信息检索 算法 运筹学 业务 数学 计算机安全 物理 声学 程序设计语言
作者
Maya Balakrishnan,Kris Ferreira,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03850
摘要

Even if algorithms make better predictions than humans on average, humans may sometimes have private information that an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by algorithms in such situations? When deciding whether and how to override an algorithm’s recommendations, we hypothesize that people are biased toward following naïve advice-weighting (NAW) behavior; they take a weighted average between their own prediction and the algorithm’s prediction, with a constant weight across prediction instances regardless of whether they have valuable private information. This leads to humans overadhering to the algorithm’s predictions when their private information is valuable and underadhering when it is not. In an online experiment where participants were tasked with making demand predictions for 20 products while having access to an algorithm’s predictions, we confirm this bias toward NAW and find that it leads to a 20%–61% increase in prediction error. In a second experiment, we find that feature transparency—even when the underlying algorithm is a black box—helps users more effectively discriminate how to deviate from algorithms, resulting in a 25% reduction in prediction error. We make further improvements in a third experiment via an intervention designed to move users away from advice weighting and instead, use only their private information to inform deviations, leading to a 34% reduction in prediction error. This paper has been This paper was accepted by Elena Katok for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03850 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的遥完成签到,获得积分10
4秒前
gwbk完成签到,获得积分10
11秒前
ZQ完成签到,获得积分10
14秒前
threethousand完成签到,获得积分10
17秒前
文献快到兜里来完成签到,获得积分10
22秒前
WC驳回了kitsch应助
1分钟前
1分钟前
1分钟前
Wy发布了新的文献求助30
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
纯洁完成签到,获得积分10
1分钟前
Wy完成签到,获得积分10
1分钟前
002完成签到,获得积分10
2分钟前
3分钟前
斗南03发布了新的文献求助10
3分钟前
斗南03完成签到,获得积分20
4分钟前
Zzz_Carlos完成签到 ,获得积分10
4分钟前
爆米花应助天真咖啡豆采纳,获得10
4分钟前
001完成签到,获得积分10
4分钟前
宇文非笑完成签到 ,获得积分10
5分钟前
胜天半子完成签到 ,获得积分10
5分钟前
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
5分钟前
烟花应助飞快的万声采纳,获得10
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
SYLH完成签到 ,获得积分0
6分钟前
6分钟前
勤恳依霜发布了新的文献求助10
6分钟前
也是难得取个名完成签到 ,获得积分10
6分钟前
酷波er应助003采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
8分钟前
Jessie完成签到,获得积分10
8分钟前
9分钟前
科研通AI2S应助Jessie采纳,获得10
9分钟前
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729118
求助须知:如何正确求助?哪些是违规求助? 3274302
关于积分的说明 9984870
捐赠科研通 2989538
什么是DOI,文献DOI怎么找? 1640560
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748145