Comparative study on prediction of coal seam gas extraction based on Extreme Gradient Boosting and random forest model improved by optimization algorithm

随机森林 物理 梯度升压 Boosting(机器学习) 萃取(化学) 优化算法 算法 人工智能 数学优化 计算机科学 化学 数学 色谱法
作者
Ao Li,Xijian Li,Junjie Cai,Shoukun Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0254631
摘要

Gas, a silent and deadly hazard in coal mines, poses a significant risk of coal seam gas outbursts and excessive emissions. Effective coal seam gas drainage is crucial for mitigating these risks. This study focuses on the coal seam characteristics of the 21 601 transports gallery in the Qinglong coal mine, selecting drainage stage, negative pressure, and concentration as input variables, with the volume of gas drainage as the output variable. We have integrated the XGBoost (Extreme Gradient Boosting) and random forest (RF) algorithms with Bayesian, Sparrow, Scarab, and Gorilla optimization algorithms—establishing a composite model for predicting coal seam gas drainage volume. Our research indicates that the predictive performance of models optimized by these algorithms surpasses that of other models. Specifically, the XGBoost algorithm outperforms the RF algorithm in predicting coal seam gas drainage volume. Among the optimization algorithms tested, the OP (Bayesian optimization) algorithm demonstrated the poorest fit and highest error rates. In terms of validation set performance, the XG-GTO (Gorilla and XGBoost combined algorithm) composite model excelled, with metrics of MAE (mean absolute error) = 0.217 82, MAPE (mean absolute percentage error) = 0.1149, MSE (mean square error) = 0.082 153, RMSE (root mean square error) = 0.286 62, and R2 (coefficient of determination) = 0.920 59. Furthermore, the Shapley additive explanations revealed that drainage concentration has the most significant impact on gas drainage. This study not only furnishes robust data support for the construction of coal mine big data but also holds substantial value for the development of intelligent coal mine systems and the enhancement of intelligent gas drainage technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linxiaoting发布了新的文献求助10
1秒前
动听白翠完成签到,获得积分10
1秒前
Yancy发布了新的文献求助10
1秒前
打打应助yhuyfuhk采纳,获得10
2秒前
3秒前
3秒前
蒙开心完成签到 ,获得积分10
3秒前
科研通AI5应助李鬼胥采纳,获得10
3秒前
LD发布了新的文献求助10
4秒前
RRRRR完成签到,获得积分20
4秒前
搜集达人应助小于采纳,获得10
5秒前
陈飞飞发布了新的文献求助10
5秒前
xu发布了新的文献求助10
5秒前
5秒前
四糸乃发布了新的文献求助10
6秒前
脑洞疼应助Yancy采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
略晓薛发布了新的文献求助10
6秒前
英姑应助九黎采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得20
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
情怀应助小劳采纳,获得10
8秒前
8秒前
Zn应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
领导范儿应助manguang采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267