Unveiling the Origin of Oxygen Framework Stability in Ultra‐High Nickel Layered Oxide Cathodes

材料科学 氧化物 阴极 氧气 氧化还原 过渡金属 化学工程 无机化学 冶金 催化作用 物理化学 电化学 电极 有机化学 化学 工程类 生物化学
作者
Fangyan Liu,Shihao Li,Chihon Leung,Xiaozhi Jiang,Han Liu,Tianyi Li,Qi Liu,Gang Sun,Zhen‐Bo Wang,Zhian Zhang,Yanqing Lai,Yang Ren,Jiayi Yang
出处
期刊:Advanced Materials [Wiley]
被引量:9
标识
DOI:10.1002/adma.202419856
摘要

Ultra-high nickel layered oxides are recognized as promising cathode candidates for high-energy-density lithium-ion batteries due to their enhanced overall capacity and elevated operating voltage. However, the interlayer sliding of transition metal-oxygen octahedra (TMO6) and the instability of lattice oxygen at high voltages for ultra-high nickel oxide cathodes pose significant challenges to their development. Herein, the origin of oxygen framework stability is investigated by incorporating high-covalent element Mo in both bulk and surface using a one-step integrated method for ultra-high nickel cathode material LiNi0.92Co0.08O2. It is revealed that apart from the isolation and protection effect of the Mo-enriched surface layer, the suppression of Li/Ni antisite defects by Mo6+ with strong covalency in the bulk plays a critical role in reducing the configurations of the activated anionic redox reaction and stabilizing the lattice oxygen and oxygen framework structure. Benefiting from this, the reversibility of anionic redox reaction and the stability of oxygen framework is significantly enhanced, enabling more oxidized oxygen to exist in the form of oxygen dimer ions O2n-$O_2^{n - }$ rather than being lost as gaseous O2. Consequently, the modified ultra-high nickel material demonstrates improved diffusion kinetics and optimized electrochemical performance at high voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jinjin发布了新的文献求助20
刚刚
1秒前
1秒前
syy080837发布了新的文献求助10
1秒前
aaa发布了新的文献求助20
2秒前
沉静傲霜发布了新的文献求助10
2秒前
健康的不愁完成签到 ,获得积分20
3秒前
zmin发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
vincent完成签到,获得积分10
4秒前
秦长春发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
无花果应助激动的曼雁采纳,获得10
5秒前
SSScoups完成签到,获得积分10
6秒前
在水一方应助emmaguo713采纳,获得10
6秒前
平淡的白云完成签到,获得积分10
6秒前
斯文败类应助晞嘻采纳,获得10
6秒前
明亮寒安完成签到,获得积分10
7秒前
7秒前
弥漫的橘发布了新的文献求助20
7秒前
8秒前
Sega完成签到,获得积分10
8秒前
廊桥遗梦发布了新的文献求助10
8秒前
sss完成签到 ,获得积分10
9秒前
英俊的铭应助小华采纳,获得10
9秒前
anubisi发布了新的文献求助30
10秒前
10秒前
流萤发布了新的文献求助10
10秒前
GCY发布了新的文献求助20
10秒前
田彬杰发布了新的文献求助10
11秒前
11秒前
11秒前
杜思淇完成签到,获得积分10
11秒前
kk发布了新的文献求助10
13秒前
Omni发布了新的文献求助10
13秒前
13秒前
Xman完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482