Highly Sensitive Gas and Ethanol Vapor Sensors Based on Carbon Heterostructures for Room Temperature Detection

材料科学 异质结 纳米技术 水蒸气 碳纤维 化学工程 光电子学 有机化学 复合材料 化学 复合数 工程类
作者
Michal Kočí,P. Wróbel,Marcin Godzierz,Ondrej Szabó,S. Pusz,Štěpán Potocký,M. Hušák,Alexander Kromka
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c21591
摘要

Graphene oxides (GOs) and hydrogen-terminated nanocrystalline diamonds (H-NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in various applications, including gas sensing. Currently, there is a significant focus on air quality and the presence of pollutants (NH3, NO2, etc.), as well as volatile organic compounds (VOC) such as ethanol vapor from industry. This study examines the synthesis of GO, reduced graphene oxide (rGO), thiol-functionalized graphene oxide (SH-GO), and H-NCD thin films and their combination in heterostructures. The materials were analyzed for their ability to detect NO2, NH3, and ethanol vapor at room temperature (22 °C). Among the tested materials, the SH-GO/H-NCD heterostructure exhibited the highest sensitivity, with approximately 630% for ethanol vapor, 41% for NH3 and -19% for NO2. The SH-GO/H-NCD heterostructure also demonstrated reasonable response (272 s) and recovery (34 s) times. Cross-selectivity measurements revealed that the heterostructure's response to ethanol vapor at 100 ppm remained dominant and was minimally affected by the presence of NH3 (100 ppm) or CO2 (100 ppm). The response variations were -1.3% for NO2 and 2.4% for NH3, respectively. These findings suggest that this heterostructure has the potential to be used as an active layer in low-temperature gas sensors. Furthermore, this research proposes a primary mechanism that explains the enhanced sensor response of the heterostructure compared with bare GOs and H-NCD layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanghao完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
17完成签到 ,获得积分10
2秒前
2秒前
xiaoyao发布了新的文献求助10
2秒前
宋莹完成签到 ,获得积分10
3秒前
浮游应助踏实乐枫采纳,获得10
4秒前
4秒前
快乐飞丹发布了新的文献求助10
5秒前
momo19发布了新的文献求助10
5秒前
orixero应助Leexxxhaoo采纳,获得10
5秒前
丁丁丁完成签到,获得积分10
6秒前
NexusExplorer应助机读卡采纳,获得30
6秒前
歪西西发布了新的文献求助10
6秒前
SunOSun完成签到 ,获得积分10
6秒前
追寻的筝发布了新的文献求助10
6秒前
无欲无求傻傻完成签到,获得积分10
7秒前
chunjianghua完成签到,获得积分10
7秒前
松大宝完成签到,获得积分10
7秒前
7秒前
欢喜火完成签到,获得积分10
8秒前
8秒前
丁丁丁发布了新的文献求助10
9秒前
壮观的垣完成签到,获得积分10
9秒前
充电宝应助white采纳,获得10
9秒前
哈哈环完成签到 ,获得积分10
9秒前
陶醉嘉懿完成签到,获得积分10
10秒前
YYJ完成签到 ,获得积分10
10秒前
10秒前
11秒前
完美世界应助everyone_woo采纳,获得10
11秒前
量子星尘发布了新的文献求助200
11秒前
史前巨怪完成签到,获得积分10
11秒前
标致嫣发布了新的文献求助10
12秒前
七龙珠完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959141
求助须知:如何正确求助?哪些是违规求助? 4220021
关于积分的说明 13139513
捐赠科研通 4003410
什么是DOI,文献DOI怎么找? 2190807
邀请新用户注册赠送积分活动 1205422
关于科研通互助平台的介绍 1116824