A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism

新陈代谢 生物化学 化学 生物
作者
Felix J. Elling,Fabien Pierrel,Sophie-Carole Chobert,Sophie S. Abby,T. Evans,Arthur Reveillard,Ludovic Pélosi,Juliette Schnoebelen,Jordon Hemingway,Ahcène Boumendjel,Kevin W. Becker,Pieter Blom,Julia Cordes,Vinitra Nathan,Frauke Baymann,Sebastian Lücker,Eva Spieck,Jared R. Leadbetter,Kai‐Uwe Hinrichs,Roger E. Summons,Ann Pearson
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (8)
标识
DOI:10.1073/pnas.2421994122
摘要

The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想吃胖真好难完成签到,获得积分10
刚刚
快乐匕完成签到 ,获得积分20
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得20
1秒前
竹筏过海应助科研通管家采纳,获得30
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
暴躁四叔应助科研通管家采纳,获得30
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
请叫我风吹麦浪应助una采纳,获得10
3秒前
wanci应助梦潜采纳,获得10
4秒前
5秒前
糖糖爱干饭完成签到 ,获得积分10
8秒前
樱香音子发布了新的文献求助10
8秒前
9秒前
大模型应助莫溪月采纳,获得10
10秒前
xixixiziwei完成签到,获得积分10
10秒前
11秒前
cun发布了新的文献求助10
13秒前
白白完成签到,获得积分10
16秒前
CipherSage应助平淡南霜采纳,获得10
16秒前
风中亦玉发布了新的文献求助10
16秒前
小李子发布了新的文献求助10
17秒前
菠cai完成签到,获得积分10
18秒前
21秒前
不知道我是完成签到 ,获得积分10
21秒前
22秒前
CodeCraft应助corre采纳,获得10
22秒前
Jasper应助Sandy采纳,获得30
22秒前
23秒前
韩soso完成签到,获得积分10
24秒前
叮咚完成签到,获得积分10
25秒前
26秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464442
求助须知:如何正确求助?哪些是违规求助? 3057804
关于积分的说明 9058430
捐赠科研通 2747884
什么是DOI,文献DOI怎么找? 1507625
科研通“疑难数据库(出版商)”最低求助积分说明 696592
邀请新用户注册赠送积分活动 696200