A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism

新陈代谢 生物化学 化学 生物
作者
Felix J. Elling,Fabien Pierrel,Sophie-Carole Chobert,Sophie S. Abby,T. Evans,Arthur Reveillard,Ludovic Pélosi,Juliette Schnoebelen,Jordon Hemingway,Ahcène Boumendjel,Kevin W. Becker,Pieter Blom,Julia Cordes,Vinitra Nathan,Frauke Baymann,Sebastian Lücker,Eva Spieck,Jared R. Leadbetter,Kai‐Uwe Hinrichs,Roger E. Summons,Ann Pearson
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (8)
标识
DOI:10.1073/pnas.2421994122
摘要

The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
李健的小迷弟应助风清扬采纳,获得10
1秒前
creasent完成签到,获得积分10
1秒前
马秀玲发布了新的文献求助10
1秒前
aaaaa22222完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
somnus完成签到,获得积分10
4秒前
深情安青应助碧蓝醉卉采纳,获得10
4秒前
wtt123发布了新的文献求助10
5秒前
nkmenghan发布了新的文献求助10
5秒前
彭于晏应助啵子采纳,获得10
5秒前
流觞俊秀完成签到 ,获得积分10
5秒前
上官若男应助Eshujia采纳,获得10
5秒前
6秒前
浮游应助月蚀六花采纳,获得10
6秒前
6秒前
英俊的菲鹰完成签到,获得积分20
6秒前
中中中发布了新的文献求助10
6秒前
6秒前
6秒前
bhhyyy应助minsu采纳,获得10
7秒前
CodeCraft应助minsu采纳,获得10
7秒前
无私擎完成签到,获得积分10
7秒前
伍志伟发布了新的文献求助10
7秒前
7秒前
桐桐应助甜美冰蓝采纳,获得30
8秒前
8秒前
8秒前
万能图书馆应助37采纳,获得10
9秒前
9秒前
辞稚发布了新的文献求助10
9秒前
七七发布了新的文献求助10
10秒前
10秒前
10秒前
Ava应助纯情母蟑螂采纳,获得10
10秒前
旺旺完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177