Mathematical Model of Metal–Oxide Memristor Resistive Switching based on Full Physical Model of Heat and Mass Transfer of Oxygen Vacancies and Ions

记忆电阻器 传质 氧化物 材料科学 离子 电压 热传导 空位缺陷 电阻随机存取存储器 电子 机械 凝聚态物理 复合材料 物理 冶金 量子力学
作者
Alexander N. Busygin,S. Yu. Udovichenko,Abdullah Haidar Abdo Ebrahim,Andrey N. Bobylev,Alexey A. Gubin
出处
期刊:Physica Status Solidi A-applications and Materials Science [Wiley]
卷期号:220 (11) 被引量:3
标识
DOI:10.1002/pssa.202200478
摘要

Herein, a 1D mathematical model of memristor resistive switching that includes a full physical model of steady‐state heat and mass transfer is developed. The model considers ions and vacancies generation, recombination, and drift in an electric field in the memristor structure with dominant charge transport mechanism of electron tunnel hopping through vacancies. The distributions of vacancy concentration depending on the applied voltage and the given temperature of the memristor are found by numerical simulation. A good agreement is obtained between the part of the simulated current–voltage characteristics and the experimental one. There is no noticeable temperature gradient in a forming‐free nonfilament memristor. Therefore, the calculation of the vacancy concentration and the current–voltage characteristics in a forming‐free memristor with constant temperature over the film is appropriate. It is shown that the ion‐vacancy recombination can be neglected at temperatures over 600 K. In that case, the equation for ions, as well as the recombination term in the equation for vacancies can be neglected. The developed model at the same time consider all the processes occurring in the oxide layer and allow to reduce the computational complexity without significant loss of accuracy. The proposed model can be used to model large memristor arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大方嵩采纳,获得10
刚刚
英俊的铭应助大方嵩采纳,获得10
刚刚
李还好完成签到,获得积分10
1秒前
满意的柏柳完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
buno应助88采纳,获得10
4秒前
5秒前
三千世界完成签到,获得积分10
5秒前
5秒前
愉快的访旋完成签到,获得积分10
6秒前
Alpha完成签到,获得积分10
7秒前
大大发布了新的文献求助30
7秒前
翠翠发布了新的文献求助10
8秒前
半山发布了新的文献求助10
9秒前
9秒前
天天快乐应助CO2采纳,获得10
9秒前
隐形曼青应助junzilan采纳,获得10
10秒前
Dksido发布了新的文献求助10
10秒前
11秒前
思源应助卓哥采纳,获得10
11秒前
mysci完成签到,获得积分10
14秒前
15秒前
Quzhengkai发布了新的文献求助10
16秒前
16秒前
17秒前
落寞晓灵完成签到,获得积分10
17秒前
ORAzzz应助翠翠采纳,获得20
18秒前
zoe完成签到,获得积分10
18秒前
习习应助学术小白采纳,获得10
18秒前
19秒前
20秒前
tianny关注了科研通微信公众号
21秒前
21秒前
CO2发布了新的文献求助10
21秒前
桐桐应助zhangscience采纳,获得10
22秒前
求助发布了新的文献求助10
23秒前
buno应助zoe采纳,获得10
24秒前
junzilan发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808