材料科学
纳米纤维
阴极
纤维素
电解质
重量分析
电池(电)
硫黄
化学工程
锂(药物)
多孔性
锂硫电池
储能
功率密度
纳米技术
复合材料
化学
有机化学
功率(物理)
电极
物理化学
物理
热力学
医学
内分泌学
工程类
冶金
作者
Yingyi Huang,Mahdokht Shaibani,M.J. Abedin,David Joram Mendoza,Zhou Xu,Tanesh D. Gamot,M. C. Dilusha Cooray,Maoqi Lin,Gil Garnier,Matthew R. Hill,Mainak Majumder
标识
DOI:10.1002/aenm.202202474
摘要
Abstract The realization of lithium–sulfur (Li–S) batteries as an energy storage technology depends on unlocking practical performance at commercially relevant pouch cell scales. Typically, the heterogeneous and porous nature of large scale, high sulfur loading Li–S batteries require increased electrolyte levels and impede electronic conductivity. Improved cathode structures offer a pathway to strong performance at large battery scales. Here, the successful development of a new cathode using highly‐carboxylated and negatively surface charged cellulose nanofibers as a backbone that addresses these issues and delivers an ordered, dense architecture whilst maintaining long term cycle life, is reported. Taken together this leads to an Ah‐level pouch cell with a peak capacity above 1200 mAh g −1 and an areal capacity of around 15 mAh cm −2 , which achieves a high gravimetric energy density of up to 330 Wh kg −1 and volumetric energy density of 480 Wh L −1 . The cell is used to power a drone for 10 min, demonstrating the ability of this discovery to be translated at practical scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI