过电位
催化作用
电催化剂
退火(玻璃)
化学
纳米技术
氢
化学工程
材料科学
物理化学
电化学
有机化学
冶金
电极
工程类
作者
Qian Zhang,Guomian Ren,Deyu Li,Qingyu Kong,Zhiwei Hu,Yong Xu,Suling Wang,Lu Wang,Maofeng Cao,Xiaoqing Huang
标识
DOI:10.1016/j.scib.2022.10.001
摘要
Ru has recently been regarded as a promising catalyst for hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) due to its similar binding energy towards *H but lower price compared to Pt. Nevertheless, the quest of high-efficiency Ru-based catalysts for HOR and HER is driven by the current disadvantages including low activity and unsatisfactory stability. Herein, we have fabricated and engineered two-dimensional (2D) Ru-based snow-like nanosheets with Ru/RuO2 interface (Ru/RuO2 SNSs) via a post-annealing treatment. Detailed characterizations and theoretical calculations indicate that the interfacial synergy, which is dependent on the temperature for annealing, can alter the hydrogen binding energy (HBE) and hydroxide binding energy (OHBE), as a result of the enhanced HOR and HER performance. Impressively, the optimal Ru/RuO2 SNSs display a mass activity of 9.13 A mgRu-1 at an overpotential of 50 mV in 0.1 mol L-1 KOH for HOR, which is 65, 304, and 21 times higher than those of Ru SNSs (0.14 A mgRu-1), RuO2 SNSs (0.03 A mgRu-1), and commercial Pt/C (0.43 A mgRu-1), respectively. Moreover, Ru/RuO2 SNSs display improved HER activity with a low overpotential of 20.2 mV for achieving 10 mA cm-2 in 1 mol L-1 KOH. This work not only provides an efficient catalyst for HOR and HER, but also promotes fundamental research on the fabrication and modification of catalysts in heterogeneous catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI