Oxygen defect engineering and amphipathic molecules intercalation co-boosting fast kinetics and stable structure of S-doped (NH4)2V10O25∙8H2O free-standing cathode for aqueous Zn-ion storage

材料科学 阴极 化学工程 水溶液 插层(化学) 溶解 电化学 电化学动力学 氧化钒 无机化学 电极 有机化学 物理化学 化学 冶金 工程类
作者
Junye Zhang,Ruona Liu,Huang Chen,Ciqing Dong,Le Xu,Linying Yuan,Shigang Lu,Linlin Wang,Ling Zhang,Luyang Chen
出处
期刊:Nano Energy [Elsevier]
卷期号:122: 109301-109301 被引量:49
标识
DOI:10.1016/j.nanoen.2024.109301
摘要

The exploration of appropriate layered vanadium-based cathode materials (Zn2+-host) is a crucial and important task for the exploitation of high-performance aqueous zinc ion batteries (AZIBs). Unfortunately, these materials suffer from sluggish kinetics of Zn2+ diffusion and the dissolution of vanadium that make them difficult to reach high capacity and long cycle life. Herein, a novel free-standing cathode (denoted as 3D-NPG@S-NVO@CTAB) has been fabricated by hydrothermal growth of sulfur-doped (NH4)2V10O25∙8 H2O (S-NVO) hollow nanoflowers in three-dimensional nitrogen-doped porous graphene (3D-NPG) and subsequent C19H42N+ (CTAB) pre-insertion. Benefitting from the rational design strategy, the oxygen vacancies induced by sulfur doping weaken electrostatic interaction between Zn2+ and cathode, provide more transfer channels and strengthen electronic conductivity. Meanwhile, the simultaneous introduction of S and CTAB into NVO jointly expands interlayer spacing and enhances Zn2+ diffusion kinetics, which suppresses the dissolution of vanadium by reducing water molecule intercalation and maintains the structure integrity with excellent electrochemical performance (525 mAh g−1 at 0.5 A g−1). Even at a high rate of 5 A g−1, the hierarchical cathode (3D-NPG@S-NVO@CTAB) can still deliver a capacity of 356 mAh g−1 with capacity retention rate of 90% after 2000 cycles. Density functional theory (DFT) calculations indicate that S-doping, the introduction oxygen defects and CTAB obviously strengthen carrier concentration, which represents the enhancement of conductivity. This work can provides ideas for the construction of advanced AZIB devices through the inorganic/organic hybridization of vanadium-based electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
爆米花应助sun采纳,获得10
1秒前
1秒前
1秒前
liwei发布了新的文献求助10
1秒前
云子完成签到,获得积分10
2秒前
大聪明发布了新的文献求助10
2秒前
yuliuism应助快乐的凡阳采纳,获得10
2秒前
爆米花应助FeifeiWang采纳,获得10
4秒前
4秒前
年禹发布了新的文献求助10
4秒前
达不溜完成签到,获得积分10
5秒前
搜集达人应助亮亮来咯采纳,获得10
5秒前
李昕123发布了新的文献求助10
5秒前
热心市民小红花应助fts213采纳,获得10
5秒前
Gran完成签到,获得积分10
6秒前
LKX完成签到,获得积分10
6秒前
十一完成签到 ,获得积分10
6秒前
7秒前
8秒前
六六应助无情的凌雪采纳,获得10
9秒前
10秒前
10秒前
吴悦完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
子木李完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
风中冰香应助buchun采纳,获得10
13秒前
今后应助研友_LOoaQL采纳,获得10
13秒前
young发布了新的文献求助10
13秒前
科研顺利666完成签到 ,获得积分10
14秒前
14秒前
亮亮来咯完成签到,获得积分10
14秒前
14秒前
星辰大海应助zhoudada采纳,获得10
15秒前
B站萧亚轩完成签到,获得积分10
15秒前
15秒前
调皮秋凌发布了新的文献求助10
16秒前
Alex发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491562
求助须知:如何正确求助?哪些是违规求助? 4590068
关于积分的说明 14428695
捐赠科研通 4522306
什么是DOI,文献DOI怎么找? 2477856
邀请新用户注册赠送积分活动 1462948
关于科研通互助平台的介绍 1435627