Generalized Model and Deep Reinforcement Learning-Based Evolutionary Method for Multitype Satellite Observation Scheduling

强化学习 计算机科学 调度(生产过程) 人工智能 可扩展性 人口 数学优化 人工神经网络 遗传程序设计 深信不疑网络 机器学习 数学 数据库 社会学 人口学
作者
Yanjie Song,Junwei Ou,Witold Pedrycz,Ponnuthurai Nagaratnam Suganthan,Xinwei Wang,Lining Xing,Yue Zhang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (4): 2576-2589 被引量:23
标识
DOI:10.1109/tsmc.2023.3345928
摘要

Multitype satellite observation, including optical observation satellites, synthetic aperture radar (SAR) satellites, and electromagnetic satellites, has become an important direction in integrated satellite applications due to its ability to cope with various complex situations. In the multitype satellite observation scheduling problem (MTSOSP), the constraints involved in different types of satellites make the problem challenging. This article proposes a mixed-integer programming model and a generalized profit representation method in the model to effectively cope with the situation of multiple types of satellite observations. To obtain a suitable observation plan, a deep reinforcement learning-based genetic algorithm (DRL-GA) is proposed by combining the learning method and genetic algorithm. The DRL-GA adopts a solution generation method to obtain the initial population and assist with local search. In this method, a set of statistical indicators that consider resource utilization and task arrangement performance are regarded as states. By using deep neural networks to estimate the $Q$ value of each action, this method can determine the preferred order of task scheduling. An individual update strategy and an elite strategy are used to enhance the search performance of DRL-GA. Simulation results verify that DRL-GA can effectively solve the MTSOSP and outperforms the state-of-the-art algorithms in several aspects. This work reveals the advantages of the proposed generalized model and scheduling method, which exhibit good scalability for various types of observation satellite scheduling problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吃猫的鱼发布了新的文献求助10
1秒前
TX完成签到,获得积分10
2秒前
开心不愁发布了新的文献求助10
3秒前
良辰应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
suibianba应助科研通管家采纳,获得10
4秒前
良辰应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
良辰应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
良辰应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
dll发布了新的文献求助10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
suibianba应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
良辰应助科研通管家采纳,获得10
6秒前
良辰应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
良辰应助科研通管家采纳,获得10
6秒前
魔幻的盼芙完成签到 ,获得积分10
9秒前
从容安珊完成签到,获得积分10
9秒前
英姑应助望北采纳,获得30
9秒前
yjihn发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
14秒前
14秒前
科目三应助开心不愁采纳,获得10
15秒前
小马甲应助Suki采纳,获得10
15秒前
善良夜梅发布了新的文献求助30
16秒前
汉堡包应助苏柏亚采纳,获得10
16秒前
biglixiang发布了新的文献求助30
16秒前
华仔应助扶光采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344