Unlocking the therapeutic potential of drug combinations through synergy prediction using graph transformer networks

概化理论 计算机科学 图形 药物基因组学 变压器 药品 交叉验证 数据挖掘 人工智能 模式识别(心理学) 生物信息学 数学 理论计算机科学 电压 统计 生物 药理学 物理 量子力学
作者
Waleed Alam,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108007-108007 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108007
摘要

Drug combinations are frequently used to treat cancer to reduce side effects and increase efficacy. The experimental discovery of drug combination synergy is time-consuming and expensive for large datasets. Therefore, an efficient and reliable computational approach is required to investigate these drug combinations. Advancements in deep learning can handle large datasets with various biological problems. In this study, we developed a SynergyGTN model based on the Graph Transformer Network to predict the synergistic drug combinations against an untreated cancer cell line expression profile. We represent the drug via a graph, with each node and edge of the graph containing nine types of atomic feature vectors and four bonds features, respectively. The cell lines represent based on their gene expression profiles. The drug graph was passed through the GTN layers to extract a generalized feature map for each drug pairs. The drug pair extracted features and cell-line gene expression profiles were concatenated and subsequently subjected to processing through multiple densely connected layers. SynergyGTN outperformed the state-of-the-art methods, with a receiver operating characteristic area under the curve improvement of 5% on the 5-fold cross-validation. The accuracy of SynergyGTN was further verified through three types of cross-validation tests strategies namely leave-drug-out, leave-combination-out, and leave-tissue-out, resulting in improvement in accuracy of 8%, 1%, and 2%, respectively. The Astrazeneca Dream dataset was utilized as an independent dataset to validate and assess the generalizability of the proposed method, resulting in an improvement in balanced accuracy of 13%. In conclusion, SynergyGTN is a reliable and efficient computational approach for predicting drug combination synergy in cancer treatment. Finally, we developed a web server tool to facilitate the pharmaceutical industry and researchers, as available at: http://nsclbio.jbnu.ac.kr/tools/SynergyGTN/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_850EYZ发布了新的文献求助10
1秒前
hhd完成签到 ,获得积分10
1秒前
sowhat完成签到 ,获得积分10
2秒前
勤奋青寒完成签到,获得积分10
4秒前
静仰星空完成签到,获得积分10
7秒前
yep完成签到,获得积分10
7秒前
皮皮完成签到 ,获得积分10
9秒前
Kevin Huang完成签到 ,获得积分10
11秒前
第二支羽毛完成签到 ,获得积分10
14秒前
bill完成签到,获得积分10
15秒前
研友Bn完成签到 ,获得积分10
15秒前
包包酱完成签到,获得积分10
18秒前
小达人完成签到 ,获得积分10
20秒前
hyf完成签到 ,获得积分10
22秒前
111111完成签到,获得积分10
23秒前
唐禹嘉完成签到 ,获得积分10
23秒前
扁舟灬完成签到,获得积分10
23秒前
jasmine完成签到 ,获得积分10
28秒前
结实大白完成签到,获得积分10
32秒前
为你等候完成签到,获得积分10
32秒前
小事完成签到 ,获得积分10
34秒前
DY完成签到 ,获得积分10
34秒前
wezb完成签到 ,获得积分10
38秒前
woxin完成签到,获得积分10
38秒前
小柒柒完成签到,获得积分10
38秒前
xl完成签到 ,获得积分10
39秒前
Shrimp完成签到 ,获得积分10
44秒前
mojomars完成签到,获得积分10
44秒前
同學你該吃藥了完成签到 ,获得积分10
45秒前
相爱就永远在一起完成签到,获得积分10
45秒前
高梦芮完成签到 ,获得积分10
48秒前
欢呼宛秋完成签到 ,获得积分10
51秒前
张琳完成签到 ,获得积分10
52秒前
点墨完成签到 ,获得积分10
54秒前
慕青应助starleo采纳,获得10
54秒前
陌陌完成签到,获得积分10
55秒前
充电宝应助俭朴从安采纳,获得10
56秒前
Chong完成签到,获得积分10
57秒前
大大大大管子完成签到 ,获得积分10
1分钟前
奔铂儿钯完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
《中国建设》英文版对中国国家形象的呈现研究(1952-1965) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3650552
求助须知:如何正确求助?哪些是违规求助? 3215193
关于积分的说明 9704396
捐赠科研通 2922835
什么是DOI,文献DOI怎么找? 1600846
邀请新用户注册赠送积分活动 753683
科研通“疑难数据库(出版商)”最低求助积分说明 732846