叠氮
光催化
化学
共价键
芘
催化作用
乙腈
共价有机骨架
光化学
组合化学
有机化学
作者
Xiaoyun Dong,Fulin Zhang,Xiaogang Wang,Fengwei Huang,Xianjun Lang
标识
DOI:10.1016/j.apcatb.2023.123660
摘要
Covalent organic frameworks (COFs) can be precisely modulated through the covalent linkage of organic building blocks. Therefore, developing COFs to high-performance photocatalysts is highly applicable. Herein, with trifluoroacetic acid as the catalyst, Py-Azine-COF is constructed by aldimine condensation between 1,3,6,8-tetrakis(4-formylphenyl)pyrene and hydrazine hydrate. The highly crystalline Py-Azine-COF possesses a remarkable specific surface area of 1428 m2 g−1. Intriguingly, selective aerobic conversion is achieved over Py-Azine-COF photocatalyst with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Significantly, TEMPO accelerates the hole transfer and cooperates with superoxide formed from oxygen for selective oxidation of organic sulfides. With the assistance of 2 mol% TEMPO, the performance of Py-Azine-COF photocatalyst is increased markedly. Gratifyingly, TEMPO, a hole mediator, enables expeditious conversions of various sulfides into sulfoxides over Py-Azine-COF photocatalyst in methanol. Generally, COFs can be customized by modulating the covalent connection of organic building blocks to meet the requirements of selective aerobic oxidations.
科研通智能强力驱动
Strongly Powered by AbleSci AI