Federated Multi-Task Learning: An Overview and Quantitative Evaluation

任务(项目管理) 计算机科学 数据科学 工程类 系统工程
作者
Faisal Ahmed
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:2
标识
DOI:10.2139/ssrn.4627317
摘要

In recent, federated learning (FL) has emerged as a potential solution for large-scale distributed system networks, owing to the explosive growth of network devices and data. Despite FL’s numerous benefits, it suffers from statistical and system heterogeneity while training machine learning models. In this context, multi-task learning (MTL) is a suitable solution for dealing with the statistical challenges of federated settings. In other words, MTL has the capability to use knowledge from numerous related tasks which can enhance the generalization performance of all tasks. In this study, we provide a survey for federated multi-task learning (FMTL) from the standpoint of MTL techniques that are adopted in FL. More precisely, a classic definition of MTL is provided from the viewpoint of algorithmic modeling, and after that, the use-cases of two widely popular MTL techniques i.e., deep MTL technique and non deep MTL technique in three well-known FL categories: centralized, distributed, and hierarchical are discussed. Finally, several case studies in the form of numerical simulation are presented in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助HXia采纳,获得10
刚刚
cxy完成签到,获得积分10
刚刚
彩色蘑菇完成签到,获得积分10
1秒前
1秒前
祖问筠完成签到,获得积分10
1秒前
15297657686完成签到,获得积分10
1秒前
ttqql发布了新的文献求助10
1秒前
口爱DI乔巴完成签到,获得积分10
1秒前
zk200107完成签到,获得积分20
2秒前
KX发布了新的文献求助10
2秒前
wfy完成签到,获得积分10
2秒前
搜集达人应助uil采纳,获得10
3秒前
jon158完成签到,获得积分10
3秒前
1234完成签到 ,获得积分10
3秒前
无聊的万天完成签到,获得积分10
4秒前
懒羊羊完成签到,获得积分10
4秒前
温柔的中蓝完成签到,获得积分10
5秒前
全或无完成签到,获得积分10
5秒前
Hou完成签到,获得积分10
5秒前
诚心的芸遥完成签到,获得积分20
5秒前
5秒前
小不溜完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
yuhui完成签到,获得积分10
6秒前
上官若男应助冰阔罗采纳,获得10
6秒前
自觉馒头完成签到,获得积分10
6秒前
hyperthermal1完成签到,获得积分10
6秒前
6秒前
jake完成签到,获得积分10
7秒前
魔幻的板凳完成签到,获得积分10
9秒前
9秒前
Jeremy完成签到,获得积分10
9秒前
充电宝应助鹏飞采纳,获得10
10秒前
ruter完成签到,获得积分0
10秒前
Hello应助yan采纳,获得10
10秒前
HXia完成签到,获得积分10
11秒前
Bismarck发布了新的文献求助10
12秒前
凌儿响叮当完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580715
求助须知:如何正确求助?哪些是违规求助? 3150275
关于积分的说明 9481357
捐赠科研通 2851875
什么是DOI,文献DOI怎么找? 1567942
邀请新用户注册赠送积分活动 734306
科研通“疑难数据库(出版商)”最低求助积分说明 720593