Bistable laminates have attracted considerable interest among researchers as prospective candidates for delivering exceptional performance within the domain of morphing structures. These laminates exhibit a distinctive characteristic of featuring two stable states, sustaining their configuration until the application of a critical force that triggers a transition to their second stable position. Before discussing the practical applications involving bistable composite laminates, this paper presents analytical modeling for predicting the room-temperature shape and simulating the snap-through phenomena. The main aspects of the room-temperature shape simulation are discussed, and various snap-through triggering methods are shown. At this point, the paper focuses on a comparative analysis of numerical predictions in contrast to experimental data aimed at discerning the reliability of existing models. Furthermore, this paper not only elucidates existing challenges but also delineates potential avenues for future research. As the investigation into bistable composites progresses from comprehending intrinsic phenomena to practical, real-world applications, this study outlines both the present and potential future research concerning bistable composite laminates.