材料科学
兴奋剂
晶体结构
氧化物
热扩散率
掺杂剂
阴极
离子
晶界
纳米技术
结晶学
复合材料
化学
物理化学
冶金
光电子学
热力学
微观结构
物理
有机化学
作者
Zezhou Lin,Ke Fan,Tiancheng Liu,Zhihang Xu,Gao Chen,Honglei Zhang,Hao Li,Xuyun Guo,Xi Zhang,Ye Zhu,Peiyu Hou,Haitao Huang
标识
DOI:10.1007/s40820-023-01269-1
摘要
Abstract Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes. However, the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti 4+ will be concentrated on grain boundaries, which hinders the grain growth. In order to synthesize large single-crystal layered oxide cathodes, considering the different diffusivities of different dopant ions, we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO 2 (CS-LCO). In the current work, the high-diffusivity Al 3+ /Mg 2+ ions occupy the core of single-crystal grain while the low diffusivity Ti 4+ ions enrich the shell layer. The Ti 4+ -enriched shell layer (~ 12 nm) with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes. In-situ XRD demonstrates the constrained contraction of c -axis lattice parameter and mitigated structural distortion. Under a high upper cut-off voltage of 4.6 V, the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g −1 with a good retention of ~ 89% after 300 cycles, and reaches a high specific capacity of 163.8 mAh g −1 at 5C. The proposed strategy can be extended to other pairs of low- (Zr 4+ , Ta 5+ , and W 6+ , etc.) and high-diffusivity cations (Zn 2+ , Ni 2+ , and Fe 3+ , etc.) for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI