碘杂醇
转导(生物物理学)
色谱法
亲和层析
离心
重组DNA
病毒载体
腺相关病毒
体内
遗传增强
差速离心
分子生物学
生物
基因传递
超离心机
化学
基因
生物化学
载体(分子生物学)
生物技术
医学
放射科
造影剂
酶
作者
Anh K. Lam,Patrick L. Mulcrone,Dylan Frabutt,Junping Zhang,Matthew Chrzanowski,Sreevani Arisa,Maite Munoz,Xin Li,Moanaro Biswas,David M. Markusic,Roland W. Herzog,Weidong Xiao
摘要
Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI