In Situ Constructing Robust and Highly Conductive Solid Electrolyte with Tailored Interfacial Chemistry for Durable Li Metal Batteries

电解质 聚丙烯腈 材料科学 化学工程 阳极 成核 原位聚合 纳米纤维 电导率 枝晶(数学) 阴极 过电位 离子电导率 纳米技术 聚合 电极 电化学 化学 复合材料 聚合物 物理化学 有机化学 工程类 数学 几何学
作者
Yingmin Jin,Yumeng Li,Ruifan Lin,Xuebai Zhang,Yong Shuai,Yueping Xiong
出处
期刊:Small [Wiley]
卷期号:20 (19) 被引量:12
标识
DOI:10.1002/smll.202307942
摘要

Abstract Employing nanofiber framework for in situ polymerized solid‐state lithium metal batteries (SSLMBs) is impeded by the insufficient Li + transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li + conduction highways and nonuniform Li + flux, as randomly‐scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li 0.33 La 0.56 Ce 0.06 Ti 0.94 O 3‐δ /polyacrylonitrile framework (p‐LLCTO/PAN) with inbuilt Li + transport channels and high interfacial Li + flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI − confinement and linear alignment of Li + conduction pathways are realized inside 1D p‐LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm −1 (26 °C) and t Li+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li + highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO 4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi 0.5 Co 0.2 Mn 0.3 O 2 battery are delivered by p‐LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助对对碰采纳,获得10
1秒前
鱿鱼发布了新的文献求助10
1秒前
夜未央发布了新的文献求助10
2秒前
2秒前
ww关注了科研通微信公众号
2秒前
失眠的耳机完成签到,获得积分10
3秒前
4秒前
4秒前
syy080837发布了新的文献求助10
4秒前
Akim应助iwonder采纳,获得10
4秒前
4秒前
4秒前
所所应助冷傲的自行车采纳,获得30
5秒前
Lee发布了新的文献求助10
6秒前
yuliuism应助Dasph7采纳,获得20
6秒前
6秒前
倒逆之蝶应助科研通管家采纳,获得10
7秒前
倒逆之蝶应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
zgrmws应助科研通管家采纳,获得10
7秒前
tcf应助科研通管家采纳,获得10
7秒前
紫气东来应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
PPP完成签到,获得积分0
7秒前
紫气东来应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
zgrmws应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
一只吉蛋发布了新的文献求助10
8秒前
niNe3YUE应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
你好包包完成签到,获得积分10
8秒前
公龟应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396