已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive online mean-variance portfolio selection with transaction costs

文件夹 交易成本 计量经济学 选择(遗传算法) 差异(会计) 经济 投资组合优化 金融经济学 计算机科学 业务 精算学 财务 人工智能 会计
作者
Sini Guo,Jia-Wen Gu,Wai‐Ki Ching,Benmeng Lyu
出处
期刊:Quantitative Finance [Informa]
卷期号:24 (1): 59-82
标识
DOI:10.1080/14697688.2023.2287134
摘要

Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strategies in real investment activities where the market information is constantly renewed every second. The key issues in online portfolio selection include predicting the future returns of risky assets accurately given historical data and providing optimal investment strategies for investors in a short time. In the existing online portfolio selection studies, the historical return data of one risky asset is used to estimate its future return. In this paper, we incorporate the peer impact into the return prediction where the predicted return of one risky asset not only depends on its past return data but also the other risky assets in the financial market, which gives a more accurate prediction. An adaptive moving average method with peer impact (AOLPI) is proposed, in which the decaying factors can be adjusted automatically in the investment process. In addition, the adaptive mean-variance (AMV) model is firstly applied in online portfolio selection where the variance is employed to measure the investment risk and the covariance matrix can be linearly updated in the investment process. The adaptive online moving average mean-variance (AOLPIMV) algorithm is designed to provide flexible investment strategies for investors with different risk preferences. Finally, numerical experiments are presented to validate the effectiveness and advantages of AOLPIMV.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Rdx采纳,获得10
刚刚
刚刚
YuuuY完成签到 ,获得积分20
2秒前
2秒前
一一应助zzzz采纳,获得10
3秒前
刘卿婷发布了新的文献求助10
4秒前
4秒前
chen完成签到 ,获得积分10
5秒前
youyou完成签到,获得积分10
5秒前
alazka发布了新的文献求助10
6秒前
Linn完成签到,获得积分10
8秒前
充电宝应助良月二十三采纳,获得10
8秒前
小支完成签到 ,获得积分10
8秒前
9秒前
luor发布了新的文献求助10
9秒前
雨雨完成签到,获得积分10
11秒前
11秒前
12秒前
姜饼糖果屋完成签到,获得积分10
12秒前
14秒前
雨雨发布了新的文献求助10
14秒前
15秒前
小林子发布了新的文献求助10
16秒前
852应助平淡的从灵采纳,获得10
16秒前
17秒前
18秒前
wen发布了新的文献求助10
18秒前
bkagyin应助唐一采纳,获得10
19秒前
linkman发布了新的文献求助10
21秒前
韭黄发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
24秒前
钢铁之心发布了新的文献求助10
24秒前
27秒前
27秒前
哭泣的鞋子完成签到,获得积分10
28秒前
gjn发布了新的文献求助10
28秒前
噜啦啦完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650033
求助须知:如何正确求助?哪些是违规求助? 4779657
关于积分的说明 15051014
捐赠科研通 4808937
什么是DOI,文献DOI怎么找? 2571930
邀请新用户注册赠送积分活动 1528192
关于科研通互助平台的介绍 1487029