亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive online mean-variance portfolio selection with transaction costs

文件夹 交易成本 计量经济学 选择(遗传算法) 差异(会计) 经济 投资组合优化 金融经济学 计算机科学 业务 精算学 财务 人工智能 会计
作者
Sini Guo,Jia-Wen Gu,Wai‐Ki Ching,Benmeng Lyu
出处
期刊:Quantitative Finance [Informa]
卷期号:24 (1): 59-82
标识
DOI:10.1080/14697688.2023.2287134
摘要

Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strategies in real investment activities where the market information is constantly renewed every second. The key issues in online portfolio selection include predicting the future returns of risky assets accurately given historical data and providing optimal investment strategies for investors in a short time. In the existing online portfolio selection studies, the historical return data of one risky asset is used to estimate its future return. In this paper, we incorporate the peer impact into the return prediction where the predicted return of one risky asset not only depends on its past return data but also the other risky assets in the financial market, which gives a more accurate prediction. An adaptive moving average method with peer impact (AOLPI) is proposed, in which the decaying factors can be adjusted automatically in the investment process. In addition, the adaptive mean-variance (AMV) model is firstly applied in online portfolio selection where the variance is employed to measure the investment risk and the covariance matrix can be linearly updated in the investment process. The adaptive online moving average mean-variance (AOLPIMV) algorithm is designed to provide flexible investment strategies for investors with different risk preferences. Finally, numerical experiments are presented to validate the effectiveness and advantages of AOLPIMV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
一部船发布了新的文献求助10
12秒前
kento应助Billy采纳,获得200
12秒前
18秒前
wyq关注了科研通微信公众号
32秒前
胖胖猪完成签到,获得积分10
32秒前
zhou发布了新的文献求助10
42秒前
刘敏完成签到 ,获得积分10
49秒前
50秒前
57秒前
追寻的宛er完成签到 ,获得积分10
1分钟前
yeyi9851应助科研通管家采纳,获得10
1分钟前
StellaZhang完成签到 ,获得积分10
1分钟前
风花雪月完成签到 ,获得积分10
1分钟前
Billy应助GeoEye采纳,获得10
1分钟前
Sanci完成签到,获得积分10
1分钟前
Sanci发布了新的文献求助10
1分钟前
2分钟前
h3m完成签到 ,获得积分10
2分钟前
9464完成签到 ,获得积分10
2分钟前
2分钟前
汉堡包应助谷粱夏山采纳,获得10
2分钟前
沉默白猫完成签到 ,获得积分10
2分钟前
隐形曼青应助Tianqi采纳,获得10
2分钟前
2分钟前
hehehe完成签到,获得积分10
2分钟前
Billy应助GeoEye采纳,获得30
2分钟前
hehehe发布了新的文献求助10
2分钟前
善学以致用应助wyq采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得200
3分钟前
yeyi9851应助科研通管家采纳,获得10
3分钟前
Hayat应助科研通管家采纳,获得10
3分钟前
CC2333完成签到 ,获得积分10
3分钟前
libobobo完成签到 ,获得积分10
3分钟前
3分钟前
dhyzf1214完成签到,获得积分10
3分钟前
忧郁小鸽子完成签到,获得积分10
3分钟前
科研狗发布了新的文献求助10
3分钟前
可爱的函函应助Huang采纳,获得30
3分钟前
李健的小迷弟应助科研狗采纳,获得10
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056430
求助须知:如何正确求助?哪些是违规求助? 2713056
关于积分的说明 7434409
捐赠科研通 2358078
什么是DOI,文献DOI怎么找? 1249228
科研通“疑难数据库(出版商)”最低求助积分说明 606981
版权声明 596195