Adaptive online mean-variance portfolio selection with transaction costs

文件夹 交易成本 计量经济学 选择(遗传算法) 差异(会计) 经济 投资组合优化 金融经济学 计算机科学 业务 精算学 财务 人工智能 会计
作者
Sini Guo,Jia-Wen Gu,Wai‐Ki Ching,Benmeng Lyu
出处
期刊:Quantitative Finance [Informa]
卷期号:24 (1): 59-82
标识
DOI:10.1080/14697688.2023.2287134
摘要

Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strategies in real investment activities where the market information is constantly renewed every second. The key issues in online portfolio selection include predicting the future returns of risky assets accurately given historical data and providing optimal investment strategies for investors in a short time. In the existing online portfolio selection studies, the historical return data of one risky asset is used to estimate its future return. In this paper, we incorporate the peer impact into the return prediction where the predicted return of one risky asset not only depends on its past return data but also the other risky assets in the financial market, which gives a more accurate prediction. An adaptive moving average method with peer impact (AOLPI) is proposed, in which the decaying factors can be adjusted automatically in the investment process. In addition, the adaptive mean-variance (AMV) model is firstly applied in online portfolio selection where the variance is employed to measure the investment risk and the covariance matrix can be linearly updated in the investment process. The adaptive online moving average mean-variance (AOLPIMV) algorithm is designed to provide flexible investment strategies for investors with different risk preferences. Finally, numerical experiments are presented to validate the effectiveness and advantages of AOLPIMV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昏睡的雁易完成签到,获得积分10
1秒前
Sakura发布了新的文献求助10
1秒前
zh完成签到,获得积分10
2秒前
汉堡包应助怕黑小萱采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
zhikaiyici应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
starofjlu应助科研通管家采纳,获得20
5秒前
寻道图强应助科研通管家采纳,获得30
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得30
5秒前
6秒前
天降发布了新的文献求助10
7秒前
上官若男应助坚强幼晴采纳,获得10
7秒前
清爽的之双完成签到,获得积分10
7秒前
科研通AI2S应助聪明的书翠采纳,获得10
10秒前
科研通AI2S应助聪明的书翠采纳,获得30
10秒前
搜集达人应助Sakura采纳,获得10
11秒前
雪山飞龙发布了新的文献求助10
11秒前
xx完成签到 ,获得积分10
12秒前
sam发布了新的文献求助80
12秒前
万能图书馆应助psy采纳,获得10
13秒前
14秒前
17秒前
云风完成签到,获得积分20
17秒前
Orange应助榴莲姑娘采纳,获得10
19秒前
biubiu完成签到,获得积分10
19秒前
完美世界应助认真的鸭子采纳,获得10
20秒前
陈住气发布了新的文献求助10
20秒前
20秒前
20秒前
务实谷秋完成签到,获得积分10
21秒前
Creamai发布了新的文献求助10
24秒前
27秒前
怕黑小萱发布了新的文献求助10
28秒前
28秒前
欢喜的向卉完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810718
关于积分的说明 7889262
捐赠科研通 2469826
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012