Cation Concavities Induced d-Band Electronic Modulation on Co/FeOx Nanostructure to Activate Molecular and Interfacial Oxygen for CO Oxidation

反键分子轨道 催化作用 氧气 化学 离域电子 离解(化学) 氧化钴 无机化学 结晶学 光化学 物理化学 电子 原子轨道 生物化学 物理 有机化学 量子力学
作者
Zhisong Liu,Haomiao Xu,Yurui Fan,Qinyuan Hong,Wenjun Huang,Feng Yu,Zan Qu,Naiqiang Yan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (50): 21272-21283 被引量:5
标识
DOI:10.1021/acs.est.3c06743
摘要

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黑炭球完成签到,获得积分10
刚刚
柠檬杨完成签到,获得积分10
1秒前
1秒前
小兔子乖乖完成签到 ,获得积分10
1秒前
英俊的铭应助飘逸鸽子采纳,获得10
2秒前
Akjan完成签到,获得积分10
3秒前
荔枝QQ糖发布了新的文献求助30
4秒前
桐桐应助haki采纳,获得10
4秒前
温瞳完成签到,获得积分10
5秒前
细心故事完成签到,获得积分10
6秒前
abc123完成签到,获得积分10
6秒前
庄海棠完成签到 ,获得积分10
6秒前
小艾应助lawang采纳,获得10
6秒前
伶俐的雅寒应助lawang采纳,获得10
6秒前
完美世界应助John采纳,获得10
7秒前
小陀螺完成签到,获得积分10
7秒前
7秒前
RONG完成签到,获得积分10
7秒前
bdJ发布了新的文献求助10
7秒前
w_完成签到,获得积分10
8秒前
刘志超完成签到,获得积分10
9秒前
white完成签到,获得积分10
9秒前
科研天才完成签到,获得积分10
9秒前
Smile给Smile的求助进行了留言
9秒前
李小小飞完成签到 ,获得积分10
10秒前
Inter09完成签到,获得积分10
10秒前
果称完成签到,获得积分10
10秒前
索隆大人发布了新的文献求助30
11秒前
NICKPLZ完成签到,获得积分10
11秒前
12秒前
fdm完成签到,获得积分10
12秒前
整齐百褶裙完成签到 ,获得积分10
13秒前
坚强志泽完成签到 ,获得积分10
14秒前
14秒前
Maestro_S完成签到,获得积分0
14秒前
公龟应助lawang采纳,获得10
14秒前
ding应助lawang采纳,获得10
14秒前
公龟应助lawang采纳,获得10
14秒前
共享精神应助lawang采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651671
求助须知:如何正确求助?哪些是违规求助? 4785545
关于积分的说明 15054930
捐赠科研通 4810310
什么是DOI,文献DOI怎么找? 2573067
邀请新用户注册赠送积分活动 1528952
关于科研通互助平台的介绍 1487935