Cation Concavities Induced d-Band Electronic Modulation on Co/FeOx Nanostructure to Activate Molecular and Interfacial Oxygen for CO Oxidation

反键分子轨道 催化作用 氧气 化学 离域电子 离解(化学) 氧化钴 无机化学 结晶学 光化学 物理化学 电子 原子轨道 生物化学 物理 有机化学 量子力学
作者
Zhisong Liu,Haomiao Xu,Yurui Fan,Qinyuan Hong,Wenjun Huang,Feng Yu,Zan Qu,Naiqiang Yan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (50): 21272-21283 被引量:5
标识
DOI:10.1021/acs.est.3c06743
摘要

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atom完成签到,获得积分10
刚刚
刚刚
科研通AI6应助和谐幻柏采纳,获得10
刚刚
1秒前
我是老大应助酷炫的大白采纳,获得10
1秒前
th完成签到,获得积分10
1秒前
1秒前
wuhongcui完成签到,获得积分10
2秒前
fff完成签到,获得积分10
2秒前
高兴的垣发布了新的文献求助10
2秒前
2秒前
钢笔完成签到,获得积分10
3秒前
冷酷芷雪完成签到,获得积分10
3秒前
xlf完成签到 ,获得积分10
4秒前
TRY发布了新的文献求助10
4秒前
田様应助悠悠采纳,获得10
4秒前
4秒前
变化球完成签到,获得积分10
5秒前
Xianhe完成签到,获得积分10
5秒前
无花果应助一人之下采纳,获得10
6秒前
失眠双双发布了新的文献求助10
7秒前
7秒前
小石头发布了新的文献求助10
7秒前
氵漏漏发布了新的文献求助10
8秒前
8秒前
8秒前
丘比特应助醉月采纳,获得10
8秒前
淡淡土豆应助sunly采纳,获得10
9秒前
9秒前
lx完成签到,获得积分10
9秒前
深情安青应助zy采纳,获得10
9秒前
科研通AI6应助Fighter采纳,获得10
9秒前
Jasper应助hbkyt采纳,获得10
9秒前
zzioo发布了新的文献求助10
10秒前
10秒前
jeitt完成签到,获得积分10
11秒前
11秒前
王羊补牢完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758