Hospital Outpatient Volume Prediction Model Based on Gated Recurrent Unit Optimized by the Modified Cheetah Optimizer

均方误差 粒子群优化 计算机科学 体积热力学 人工智能 门诊部 机器学习 数学 统计 医学 物理 量子力学 内科学
作者
Reziwan Keyimu,Wumaier Tuerxun,Yan Feng,Bin Tu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 139993-140006 被引量:7
标识
DOI:10.1109/access.2023.3339613
摘要

Precise outpatient volume prediction holds significant importance in hospital management. While the Gated Recurrent Unit (GRU) is a frequently utilized deep learning technique for forecasting hospital outpatient volumes, creating a proficient GRU model necessitates the fine-tuning of pertinent GRU parametersThe adjustment of suchparameters relies heavily on an individual's practical experience and prior knowledge. The recently proposed Cheetah optimizer is a novel intelligent algorithm with unique optimization capabilities. The Cheetah optimizer holds significant research potential; however, additional investigations are warranted, as it may be vulnerable to issues related to local optimization. In the present study, the selection of hyperparameters for the GRU model wasoptimized through the utilization of the Modified Cheetah Optimization (MCO) algorithm, and a combined MCO-GRU model was established. Using the Successive Variational Mode Decomposition (SVMD) method to decompose outpatient volume sample data, the parameters of the GRU model were optimized with the MCO method to construct a hybrid forecasting model. This yielded the smallest Root Mean Square Error (RMSE) for the proposed model, with a value of 0.0843. Additionally, the results indicate that in comparison to SVMD, Long Short-Term Memory (LSTM), GRU, Particle Swarm Optimization-GRU (PSO-GRU), and Cheetah Optimization-GRU (CO-GRU), the proposed model significantly enhanced the accuracy of outpatient volume forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助天天采纳,获得10
1秒前
大个应助天天采纳,获得10
1秒前
working完成签到,获得积分10
1秒前
汉堡包应助天天采纳,获得10
1秒前
无花果应助天天采纳,获得10
1秒前
万能图书馆应助天天采纳,获得10
1秒前
东方元语应助天天采纳,获得20
1秒前
南海子完成签到,获得积分20
1秒前
无极微光应助天天采纳,获得20
1秒前
无极微光应助天天采纳,获得20
1秒前
烟花应助喜悦的易槐采纳,获得10
1秒前
惠飞薇完成签到 ,获得积分10
1秒前
2秒前
2秒前
背后的小白菜完成签到,获得积分10
2秒前
wkkkkkkk发布了新的文献求助10
2秒前
达雨发布了新的文献求助10
2秒前
2秒前
dd完成签到,获得积分10
2秒前
Hello应助12采纳,获得10
3秒前
4秒前
coldspringhao完成签到,获得积分10
5秒前
tt发布了新的文献求助10
5秒前
5秒前
佟莫言发布了新的文献求助10
6秒前
科目三应助健忘慕青采纳,获得10
6秒前
6秒前
科研通AI6应助张张采纳,获得10
6秒前
科目三应助犹豫晓啸采纳,获得10
6秒前
heather发布了新的文献求助10
7秒前
Alex完成签到,获得积分10
7秒前
wanci应助小卡采纳,获得10
8秒前
bkagyin应助7890733采纳,获得10
9秒前
Orange应助wkkkkkkk采纳,获得10
9秒前
Hayat应助玛卡巴卡采纳,获得30
9秒前
YZHANG142完成签到,获得积分10
10秒前
自觉翠安完成签到,获得积分10
11秒前
Hua发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244