Hospital Outpatient Volume Prediction Model Based on Gated Recurrent Unit Optimized by the Modified Cheetah Optimizer

均方误差 粒子群优化 计算机科学 体积热力学 人工智能 门诊部 机器学习 数学 统计 医学 物理 量子力学 内科学
作者
Reziwan Keyimu,Wumaier Tuerxun,Yan Feng,Bin Tu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 139993-140006 被引量:7
标识
DOI:10.1109/access.2023.3339613
摘要

Precise outpatient volume prediction holds significant importance in hospital management. While the Gated Recurrent Unit (GRU) is a frequently utilized deep learning technique for forecasting hospital outpatient volumes, creating a proficient GRU model necessitates the fine-tuning of pertinent GRU parametersThe adjustment of suchparameters relies heavily on an individual's practical experience and prior knowledge. The recently proposed Cheetah optimizer is a novel intelligent algorithm with unique optimization capabilities. The Cheetah optimizer holds significant research potential; however, additional investigations are warranted, as it may be vulnerable to issues related to local optimization. In the present study, the selection of hyperparameters for the GRU model wasoptimized through the utilization of the Modified Cheetah Optimization (MCO) algorithm, and a combined MCO-GRU model was established. Using the Successive Variational Mode Decomposition (SVMD) method to decompose outpatient volume sample data, the parameters of the GRU model were optimized with the MCO method to construct a hybrid forecasting model. This yielded the smallest Root Mean Square Error (RMSE) for the proposed model, with a value of 0.0843. Additionally, the results indicate that in comparison to SVMD, Long Short-Term Memory (LSTM), GRU, Particle Swarm Optimization-GRU (PSO-GRU), and Cheetah Optimization-GRU (CO-GRU), the proposed model significantly enhanced the accuracy of outpatient volume forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科目三应助felinus采纳,获得10
刚刚
庸俗完成签到,获得积分10
刚刚
科研通AI6应助YYYYZ采纳,获得10
1秒前
3秒前
XIAOJU_U完成签到 ,获得积分10
4秒前
热心鱼发布了新的文献求助10
4秒前
CipherSage应助Quhang采纳,获得10
4秒前
机智的天宇完成签到,获得积分10
5秒前
6秒前
沧沧完成签到,获得积分10
6秒前
6秒前
dann完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
吱唔朱完成签到,获得积分20
9秒前
9秒前
小透明发布了新的文献求助150
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
zbzfp发布了新的文献求助10
12秒前
哈哈哈发布了新的文献求助10
13秒前
coc完成签到,获得积分20
13秒前
兰hua发布了新的文献求助10
13秒前
谢大喵发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
毅诚菌发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573