Hospital Outpatient Volume Prediction Model Based on Gated Recurrent Unit Optimized by the Modified Cheetah Optimizer

均方误差 粒子群优化 计算机科学 体积热力学 人工智能 门诊部 机器学习 数学 统计 医学 物理 量子力学 内科学
作者
Reziwan Keyimu,Wumaier Tuerxun,Yan Feng,Bin Tu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 139993-140006 被引量:7
标识
DOI:10.1109/access.2023.3339613
摘要

Precise outpatient volume prediction holds significant importance in hospital management. While the Gated Recurrent Unit (GRU) is a frequently utilized deep learning technique for forecasting hospital outpatient volumes, creating a proficient GRU model necessitates the fine-tuning of pertinent GRU parametersThe adjustment of suchparameters relies heavily on an individual's practical experience and prior knowledge. The recently proposed Cheetah optimizer is a novel intelligent algorithm with unique optimization capabilities. The Cheetah optimizer holds significant research potential; however, additional investigations are warranted, as it may be vulnerable to issues related to local optimization. In the present study, the selection of hyperparameters for the GRU model wasoptimized through the utilization of the Modified Cheetah Optimization (MCO) algorithm, and a combined MCO-GRU model was established. Using the Successive Variational Mode Decomposition (SVMD) method to decompose outpatient volume sample data, the parameters of the GRU model were optimized with the MCO method to construct a hybrid forecasting model. This yielded the smallest Root Mean Square Error (RMSE) for the proposed model, with a value of 0.0843. Additionally, the results indicate that in comparison to SVMD, Long Short-Term Memory (LSTM), GRU, Particle Swarm Optimization-GRU (PSO-GRU), and Cheetah Optimization-GRU (CO-GRU), the proposed model significantly enhanced the accuracy of outpatient volume forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张老板发布了新的文献求助10
1秒前
tovfix完成签到,获得积分10
1秒前
三金发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
beetes完成签到,获得积分10
3秒前
3秒前
Akim应助不会取名字采纳,获得10
4秒前
5秒前
儒雅沛蓝发布了新的文献求助10
5秒前
orixero应助hansiball采纳,获得10
6秒前
wanci应助hansiball采纳,获得10
6秒前
桐桐应助hansiball采纳,获得10
6秒前
6秒前
curtisness应助hansiball采纳,获得10
6秒前
curtisness应助hansiball采纳,获得10
6秒前
酷波er应助hansiball采纳,获得10
6秒前
curtisness应助hansiball采纳,获得10
6秒前
cyj发布了新的文献求助30
6秒前
CipherSage应助hansiball采纳,获得10
6秒前
科研通AI2S应助hansiball采纳,获得10
6秒前
6秒前
cc完成签到,获得积分10
7秒前
tiamo发布了新的文献求助10
7秒前
酷波er应助欠虐宝宝采纳,获得10
7秒前
7秒前
Mint发布了新的文献求助10
8秒前
何嘉锐发布了新的文献求助10
8秒前
8秒前
花椒鱼发布了新的文献求助10
9秒前
桐桐应助会爬树的苹果采纳,获得10
9秒前
yyx完成签到 ,获得积分10
9秒前
ashore发布了新的文献求助10
9秒前
开朗白山发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791