溶剂
电化学
动力学
化学工程
材料科学
碳纤维
离子
溶解度
分子动力学
扩散
化学
纳米技术
有机化学
物理化学
电极
计算化学
复合数
热力学
量子力学
复合材料
工程类
物理
作者
Qi Huang,Lu Huang,Yaowei Jin,Yaojie Sun,Ziyang Song,Fengxian Xie
标识
DOI:10.1016/j.cej.2024.148912
摘要
Designing well-structured carbon nanomaterials is crucial for promoting zinc-ion hybrid capacitors with high-kinetics and large-current Zn2+-storage viability. Herein we report the solvent-guided nanoarchitecturing of polyimide precursor to customize versatile heterodiatomic carbon superstructures (CS). Modulating the solvent-precursor interaction through a solubility parameter model and molecular dynamic simulation optimizes the thermodynamic solubilization (–2.14 eV) and growth kinetics (–9.22 eV) of polymeric intermediates with a minimum energy obstruction. The solvent-optimized CS exhibit well-defined spherical topology, ion-compatible pore channels and favorable dual-function motifs, affording more ample-exposed zincophilic platforms and high-speed ion transport routes. As a consequence, the assembled Zn||CS hybrid capacitor activates superior electrochemical activity and durability, including superior rate capacities (240 mAh g−1 at 0.5 A g−1, 108 mAh g−1 at 100 A g−1), high energy density (145 Wh kg−1) and ultralong lifespan (300,000 cycles at 50 A g−1). Marriage of experimental studies and theoretical calculations unravel the alternate storage of opposite charges in CS cathode, which involves high-kinetics physical Zn2+/CF3SO3− uptake at zincophilic sites and chemical redox of Zn2+ ions with carbonyl/pyridine motifs to initiate O−Zn−N bonds. Molecular dynamics simulations demonstrate that diffusion kinetics of Zn2+ ions is greatly facilitated by > 10 Å micropores with low energy barriers, but is blocked by < 7 Å micropores. This work provides new insights into the structural engineering of carbon superstructures for advanced energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI