NEMO: Practical Distributed Boolean Queries With Minimal Leakage

计算机科学 同态加密 加密 布尔函数 信息泄露 理论计算机科学 启发式 协议(科学) 计算 安全多方计算 分布式计算 计算机网络 算法 人工智能 病理 医学 替代医学
作者
Jianhao Li,Jiabei Wang,Rui Zhang,Yansen Xin,Wenhan Xu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2594-2608 被引量:1
标识
DOI:10.1109/tifs.2024.3351433
摘要

Searchable symmetric encryption (SSE) schemes allow a client to store encrypted data with a storage provider and retrieve corresponding documents without revealing the content or search keywords to the provider. However, achieving efficient SSE schemes often comes at the cost of statistical information leakage, including search, access and size patterns. The known solutions from fully homomorphic encryption or oblivious RAM often admit poor performances due to significant computational and communication overheads. Additionally, the demand for rich search expressiveness, such as Boolean queries, further complicates the design. In this paper, we introduce NEMO, a novel SSE achieving a good balance between efficiency, security and query expressiveness. NEMO utilizes function secret sharing (FSS) and replicated secret sharing-based multi-party computation (MPC) protocol, but is highly optimized for large database. For functionality, NEMO supports arbitrary Boolean queries and enables dynamic updates in a multi-user setting. For security, NEMO achieves minimal leakage by eliminating all search, access, and size patterns, while only allowing the leakage of Boolean formulas in queries. Regarding efficiency, we propose a new FSS for multi-point functions, effectively batching multiple distributed point functions, and an infix-to-postfix conversion algorithm for Boolean formula to reduce the communication rounds in the MPC protocol. A proof-of-concept implementation of NEMO demonstrates its efficiency, with a search latency of approximately 622 ms for a conjunction query with 8 keywords, even with a dataset exceeding 1 million documents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晓薇完成签到,获得积分10
1秒前
科研通AI2S应助www采纳,获得10
2秒前
在水一方应助zhu采纳,获得10
2秒前
3秒前
4秒前
Lucas应助tgoutgou采纳,获得20
5秒前
PV YTT完成签到,获得积分0
5秒前
5秒前
7_应助翔翔超人采纳,获得10
5秒前
xqy完成签到 ,获得积分10
5秒前
HR112应助fan采纳,获得10
6秒前
唐煜城完成签到,获得积分10
6秒前
阿笨猫完成签到,获得积分10
6秒前
情怀应助疯狂的月亮采纳,获得10
7秒前
7秒前
黑森林完成签到,获得积分10
9秒前
英姑应助甲基醚采纳,获得10
9秒前
小二郎应助李好人采纳,获得10
11秒前
jnoker应助crazy采纳,获得20
11秒前
11秒前
自由晓蕾完成签到,获得积分10
11秒前
乐乐乐乐乐乐应助KingV采纳,获得10
11秒前
霸气紫文应助荣一采纳,获得10
13秒前
13秒前
14秒前
14秒前
TingWan完成签到,获得积分10
15秒前
小陈爱吃韩堡堡完成签到 ,获得积分10
15秒前
ddddd完成签到 ,获得积分10
15秒前
眼睛大的乐儿完成签到,获得积分10
16秒前
16秒前
温暖寻雪发布了新的文献求助10
16秒前
两院候选人应助虎虎虎采纳,获得10
18秒前
18秒前
18秒前
19秒前
yar应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312665
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523372
捐赠科研通 2620973
什么是DOI,文献DOI怎么找? 1433198
科研通“疑难数据库(出版商)”最低求助积分说明 664918
邀请新用户注册赠送积分活动 650255