Uncovering Current and Future Variations of Irrigation Water Use Across China Using Machine Learning

背景(考古学) 气候变化 代表性浓度途径 灌溉 计算机科学 环境科学 气候模式 农学 古生物学 生态学 生物
作者
Kai Liu,Yong Bo,Xueke Li,Shudong Wang,Guangsheng Zhou
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (3) 被引量:7
标识
DOI:10.1029/2023ef003562
摘要

Abstract Accurately characterizing changes in irrigation water use (IWU) is crucial for formulating optimal water resource allocation policies, particularly in the context of climate change. However, existing IWU estimation methods suffer from uncertainties due to limited data availability and model constraints, restricting their applicability on a national scale and under future climate change scenarios. We present a robust framework leveraging machine learning and multiple data sets to estimate IWU across China. Forced with an ensemble of climate and socio‐economic projections, we appraise future trends and additional costs of IWU. Our model shows high accuracy in reproducing IWU, with coefficient of determination ( R 2 ) ranging from 0.86 to 0.91 and root mean square error from 0.261 to 0.361 km 3 /yr when compared to reported values in Chinese prefectures. Independent validation at 11 cropland sites further confirms the model's predictive power ( R 2 = 0.67). Under different emissions scenarios, China's IWU is projected to increase by 8.5%–17.1% (6.8%–34.8%) by 2050s (2100s) compared to the historical period (1981–2010), with higher emissions leading to more significant increases. This rise in IWU by 2050s (2100s) comes with an estimated additional cost of US $1.65–3.91 ($2.28–6.5) billion/year, highlighting the urgency for sustainable water management. Our study provides an effective approach for estimating current and future IWU using machine learning techniques, transferable to other countries facing increasing irrigation demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到,获得积分10
刚刚
丰知然完成签到,获得积分0
刚刚
马佳凯完成签到,获得积分20
1秒前
徐翩跹发布了新的文献求助10
1秒前
lan发布了新的文献求助10
1秒前
科研民工发布了新的文献求助10
1秒前
小二郎应助夏昼采纳,获得10
2秒前
香蕉觅云应助LIU采纳,获得10
2秒前
sunny完成签到,获得积分10
2秒前
3秒前
所所应助大意的安白采纳,获得10
3秒前
elena发布了新的文献求助10
3秒前
3秒前
Tal完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
Orange应助毕业就好采纳,获得10
5秒前
机灵画板发布了新的文献求助10
5秒前
6秒前
6秒前
桐桐应助Elaine采纳,获得10
6秒前
Ymj发布了新的文献求助10
7秒前
JamesPei应助yyf采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
enoot发布了新的文献求助10
8秒前
8秒前
盘尼西林完成签到 ,获得积分10
8秒前
8秒前
9秒前
liutaili完成签到,获得积分10
9秒前
PXY完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740