Uncovering Current and Future Variations of Irrigation Water Use Across China Using Machine Learning

背景(考古学) 气候变化 代表性浓度途径 灌溉 计算机科学 环境科学 气候模式 农学 古生物学 生态学 生物
作者
Kai Liu,Yong Bo,Xueke Li,Shudong Wang,Guangsheng Zhou
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (3) 被引量:5
标识
DOI:10.1029/2023ef003562
摘要

Abstract Accurately characterizing changes in irrigation water use (IWU) is crucial for formulating optimal water resource allocation policies, particularly in the context of climate change. However, existing IWU estimation methods suffer from uncertainties due to limited data availability and model constraints, restricting their applicability on a national scale and under future climate change scenarios. We present a robust framework leveraging machine learning and multiple data sets to estimate IWU across China. Forced with an ensemble of climate and socio‐economic projections, we appraise future trends and additional costs of IWU. Our model shows high accuracy in reproducing IWU, with coefficient of determination ( R 2 ) ranging from 0.86 to 0.91 and root mean square error from 0.261 to 0.361 km 3 /yr when compared to reported values in Chinese prefectures. Independent validation at 11 cropland sites further confirms the model's predictive power ( R 2 = 0.67). Under different emissions scenarios, China's IWU is projected to increase by 8.5%–17.1% (6.8%–34.8%) by 2050s (2100s) compared to the historical period (1981–2010), with higher emissions leading to more significant increases. This rise in IWU by 2050s (2100s) comes with an estimated additional cost of US $1.65–3.91 ($2.28–6.5) billion/year, highlighting the urgency for sustainable water management. Our study provides an effective approach for estimating current and future IWU using machine learning techniques, transferable to other countries facing increasing irrigation demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助卡戎529采纳,获得10
刚刚
3秒前
李总要发财小苏发文章完成签到,获得积分10
3秒前
7秒前
心灵美的毛巾完成签到,获得积分20
10秒前
本草石之寒温完成签到 ,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
务实饼干应助科研通管家采纳,获得10
12秒前
15秒前
小红书求接接接接一篇完成签到,获得积分10
16秒前
18秒前
19秒前
21秒前
bkagyin应助忆之采纳,获得10
22秒前
情怀应助孤僻采纳,获得10
22秒前
23秒前
zxdnbb发布了新的文献求助10
24秒前
七柚完成签到,获得积分10
28秒前
32秒前
35秒前
37秒前
sixone完成签到 ,获得积分10
40秒前
LYZSh完成签到,获得积分10
40秒前
wang发布了新的文献求助10
40秒前
41秒前
42秒前
tuanheqi应助123采纳,获得30
43秒前
呆萌擎宇完成签到,获得积分20
44秒前
尺素寸心发布了新的文献求助10
46秒前
丛丛发布了新的文献求助30
47秒前
科研通AI2S应助11采纳,获得10
50秒前
51秒前
轻风发布了新的文献求助10
52秒前
田様应助尺素寸心采纳,获得10
52秒前
大气青枫发布了新的文献求助10
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079