ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction

遥感 地理 变更检测 地图学 高分辨率 计算机科学
作者
Zhipan Wang,Man Xu,Zhongwu Wang,Huadong Guo,Qingling Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103761-103761
标识
DOI:10.1016/j.jag.2024.103761
摘要

Change detection on high-resolution remote sensing imagery using end-to-end deep learning methods has attracted considerable attention in recent years. Nevertheless, the performance of end-to-end models on complicated scenarios still is limited. Interactive deep-learning models have proven to be a valuable technique for enhancing model performance with minimal human interaction. For instance, the clicks-based interactive models have attracted much attention recently, however, their performance on large regions or complex areas still can be further improved, because they cannot provide accurate semantics or shape prior information of the change regions for the interactive models, as we know that the shape and semantic features of changed regions in remote sensing imagery are typically irregular and complex. Scribble-based interactive form, which can accurately represent the shape or semantic features of the changed regions, thus it is quite suitable for change detection tasks in remote sensing imagery. Therefore, we proposed a novel interactive deep learning model called ScribbleCDNet in this manuscript, which pioneered the use of scribble as an interactive form for detecting change in bi-temporal high-resolution remote sensing imageries. Compared with the widely used clicks-based interactive deep learning models, the proposed ScribbleCDNet acquired superior results on four open-sourced change detection datasets. Last but not least, we also developed an interactive change detection tool with a user-friendly graphical interface, and it can aid researchers in conducting change detection or generating training samples conveniently. Moreover, the proposed ScribbleCDNet can also inspire researchers to develop other interactive deep-learning models related to semantic segmentation, landcover classification, or object extraction in high-resolution remote sensing imageries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实松鼠发布了新的文献求助10
1秒前
HH发布了新的文献求助10
1秒前
哒哒哒发布了新的文献求助10
2秒前
3秒前
3秒前
wanci应助WHY采纳,获得10
3秒前
Wonderland完成签到,获得积分10
3秒前
Shine完成签到 ,获得积分10
3秒前
shrimp5215发布了新的文献求助10
4秒前
思源应助背后广山采纳,获得10
4秒前
查理发布了新的文献求助10
7秒前
7秒前
小鱼仔完成签到,获得积分10
7秒前
着急的听南完成签到,获得积分10
7秒前
7秒前
领导范儿应助wxyllxx采纳,获得10
8秒前
科研通AI2S应助云_123采纳,获得10
9秒前
浪浪浪完成签到 ,获得积分10
9秒前
Akim应助惜风采纳,获得30
11秒前
12秒前
研友_VZG7GZ应助无心的青槐采纳,获得10
12秒前
火星上仰完成签到,获得积分10
12秒前
12秒前
涵涵可以发布了新的文献求助10
12秒前
小华完成签到,获得积分10
12秒前
sss完成签到,获得积分10
12秒前
WHY完成签到,获得积分10
12秒前
13秒前
13秒前
shi发布了新的文献求助10
13秒前
自信雅琴完成签到,获得积分20
13秒前
怡然酬海发布了新的文献求助20
14秒前
款冬发布了新的文献求助20
14秒前
14秒前
14秒前
英姑应助K13采纳,获得10
14秒前
mouxq发布了新的文献求助10
15秒前
15秒前
16秒前
无花果应助皮卡皮卡丘采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847