ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction

遥感 地理 变更检测 地图学 高分辨率 计算机科学
作者
Zhipan Wang,Minduan Xu,Zhongwu Wang,Qing Guo,Qingling Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103761-103761 被引量:1
标识
DOI:10.1016/j.jag.2024.103761
摘要

Change detection on high-resolution remote sensing imagery using end-to-end deep learning methods has attracted considerable attention in recent years. Nevertheless, the performance of end-to-end models on complicated scenarios still is limited. Interactive deep-learning models have proven to be a valuable technique for enhancing model performance with minimal human interaction. For instance, the clicks-based interactive models have attracted much attention recently, however, their performance on large regions or complex areas still can be further improved, because they cannot provide accurate semantics or shape prior information of the change regions for the interactive models, as we know that the shape and semantic features of changed regions in remote sensing imagery are typically irregular and complex. Scribble-based interactive form, which can accurately represent the shape or semantic features of the changed regions, thus it is quite suitable for change detection tasks in remote sensing imagery. Therefore, we proposed a novel interactive deep learning model called ScribbleCDNet in this manuscript, which pioneered the use of scribble as an interactive form for detecting change in bi-temporal high-resolution remote sensing imageries. Compared with the widely used clicks-based interactive deep learning models, the proposed ScribbleCDNet acquired superior results on four open-sourced change detection datasets. Last but not least, we also developed an interactive change detection tool with a user-friendly graphical interface, and it can aid researchers in conducting change detection or generating training samples conveniently. Moreover, the proposed ScribbleCDNet can also inspire researchers to develop other interactive deep-learning models related to semantic segmentation, landcover classification, or object extraction in high-resolution remote sensing imageries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青云客完成签到,获得积分20
1秒前
落寞的寒云完成签到,获得积分10
1秒前
月秋完成签到,获得积分20
2秒前
吃薯条发布了新的文献求助10
2秒前
healer发布了新的文献求助10
2秒前
2秒前
一点发布了新的文献求助30
2秒前
科研通AI2S应助hebhm采纳,获得10
3秒前
丘比特应助hebhm采纳,获得10
3秒前
洵0205关注了科研通微信公众号
4秒前
5秒前
5秒前
5秒前
Wang完成签到,获得积分10
6秒前
月秋发布了新的文献求助10
6秒前
万能图书馆应助阿妤采纳,获得10
6秒前
爆米花应助顺利的白山采纳,获得10
7秒前
susu完成签到 ,获得积分10
7秒前
heisebeileimao应助111采纳,获得30
9秒前
Owen应助包容代芹采纳,获得10
10秒前
云馨完成签到,获得积分10
10秒前
幽灵发布了新的文献求助10
11秒前
专注的问寒应助黄老牛采纳,获得150
12秒前
bukeshuo发布了新的文献求助10
13秒前
agrlook完成签到,获得积分10
13秒前
小二郎应助chen采纳,获得10
13秒前
15秒前
专注的问寒应助Seona采纳,获得20
15秒前
大个应助xujingyi采纳,获得10
16秒前
biubiubiu发布了新的文献求助10
16秒前
劉劉完成签到 ,获得积分10
17秒前
xz发布了新的文献求助20
19秒前
univ完成签到,获得积分10
20秒前
笑傲江湖完成签到,获得积分10
20秒前
22秒前
kid完成签到,获得积分10
22秒前
Jasper应助123456采纳,获得30
22秒前
lc发布了新的文献求助10
22秒前
22秒前
小白完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858