ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction

遥感 地理 变更检测 地图学 高分辨率 计算机科学
作者
Zhipan Wang,Minduan Xu,Zhongwu Wang,Qing Guo,Qingling Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103761-103761 被引量:1
标识
DOI:10.1016/j.jag.2024.103761
摘要

Change detection on high-resolution remote sensing imagery using end-to-end deep learning methods has attracted considerable attention in recent years. Nevertheless, the performance of end-to-end models on complicated scenarios still is limited. Interactive deep-learning models have proven to be a valuable technique for enhancing model performance with minimal human interaction. For instance, the clicks-based interactive models have attracted much attention recently, however, their performance on large regions or complex areas still can be further improved, because they cannot provide accurate semantics or shape prior information of the change regions for the interactive models, as we know that the shape and semantic features of changed regions in remote sensing imagery are typically irregular and complex. Scribble-based interactive form, which can accurately represent the shape or semantic features of the changed regions, thus it is quite suitable for change detection tasks in remote sensing imagery. Therefore, we proposed a novel interactive deep learning model called ScribbleCDNet in this manuscript, which pioneered the use of scribble as an interactive form for detecting change in bi-temporal high-resolution remote sensing imageries. Compared with the widely used clicks-based interactive deep learning models, the proposed ScribbleCDNet acquired superior results on four open-sourced change detection datasets. Last but not least, we also developed an interactive change detection tool with a user-friendly graphical interface, and it can aid researchers in conducting change detection or generating training samples conveniently. Moreover, the proposed ScribbleCDNet can also inspire researchers to develop other interactive deep-learning models related to semantic segmentation, landcover classification, or object extraction in high-resolution remote sensing imageries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助C_采纳,获得10
刚刚
温柔发卡发布了新的文献求助10
2秒前
乐乐关注了科研通微信公众号
2秒前
2秒前
几米完成签到,获得积分20
3秒前
火星上问柳完成签到,获得积分10
4秒前
4秒前
严珍珍完成签到 ,获得积分10
5秒前
5秒前
李成昊完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
英俊的铭应助bifo采纳,获得30
9秒前
9秒前
健壮的迎蕾完成签到,获得积分10
9秒前
龙眼肉发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
13秒前
SciGPT应助受伤的夏槐采纳,获得10
13秒前
彭于晏应助双丁宝贝采纳,获得30
14秒前
白云完成签到,获得积分10
15秒前
15秒前
15秒前
龙眼肉完成签到,获得积分20
16秒前
一方完成签到 ,获得积分10
16秒前
19秒前
19秒前
BowieHuang应助朴素海亦采纳,获得10
20秒前
完美世界应助尘冀等待采纳,获得10
21秒前
21秒前
21秒前
22秒前
24秒前
laxnx完成签到,获得积分10
24秒前
choumaoo完成签到,获得积分10
24秒前
24秒前
24秒前
量子星尘发布了新的文献求助30
25秒前
26秒前
几米发布了新的文献求助10
26秒前
星星发布了新的文献求助20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172