亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction

遥感 地理 变更检测 地图学 高分辨率 计算机科学
作者
Zhipan Wang,Minduan Xu,Zhongwu Wang,Qing Guo,Qingling Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103761-103761 被引量:1
标识
DOI:10.1016/j.jag.2024.103761
摘要

Change detection on high-resolution remote sensing imagery using end-to-end deep learning methods has attracted considerable attention in recent years. Nevertheless, the performance of end-to-end models on complicated scenarios still is limited. Interactive deep-learning models have proven to be a valuable technique for enhancing model performance with minimal human interaction. For instance, the clicks-based interactive models have attracted much attention recently, however, their performance on large regions or complex areas still can be further improved, because they cannot provide accurate semantics or shape prior information of the change regions for the interactive models, as we know that the shape and semantic features of changed regions in remote sensing imagery are typically irregular and complex. Scribble-based interactive form, which can accurately represent the shape or semantic features of the changed regions, thus it is quite suitable for change detection tasks in remote sensing imagery. Therefore, we proposed a novel interactive deep learning model called ScribbleCDNet in this manuscript, which pioneered the use of scribble as an interactive form for detecting change in bi-temporal high-resolution remote sensing imageries. Compared with the widely used clicks-based interactive deep learning models, the proposed ScribbleCDNet acquired superior results on four open-sourced change detection datasets. Last but not least, we also developed an interactive change detection tool with a user-friendly graphical interface, and it can aid researchers in conducting change detection or generating training samples conveniently. Moreover, the proposed ScribbleCDNet can also inspire researchers to develop other interactive deep-learning models related to semantic segmentation, landcover classification, or object extraction in high-resolution remote sensing imageries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
研友_8Y26PL完成签到 ,获得积分10
3秒前
xxll完成签到,获得积分10
7秒前
merrylake完成签到 ,获得积分10
28秒前
30秒前
33秒前
失眠呆呆鱼完成签到 ,获得积分10
38秒前
nojego完成签到,获得积分10
39秒前
乐乐应助喜悦的土豆采纳,获得10
40秒前
jyy发布了新的文献求助10
53秒前
华仔应助KSung采纳,获得10
59秒前
1分钟前
1分钟前
Yuang完成签到 ,获得积分10
1分钟前
1分钟前
徐垚发布了新的文献求助10
1分钟前
KSung发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
bkagyin应助光轮2000采纳,获得10
1分钟前
兮兮兮兮兮兮完成签到,获得积分10
1分钟前
FashionBoy应助KSung采纳,获得10
1分钟前
1分钟前
天天快乐应助ceeray23采纳,获得20
1分钟前
池雨发布了新的文献求助10
2分钟前
光轮2000发布了新的文献求助10
2分钟前
2分钟前
new1完成签到,获得积分10
2分钟前
KSung发布了新的文献求助10
2分钟前
今后应助KSung采纳,获得10
2分钟前
2分钟前
KSung发布了新的文献求助10
2分钟前
3分钟前
袁建波完成签到,获得积分10
3分钟前
我是老大应助顺利的沛萍采纳,获得10
3分钟前
肾宝发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449515
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481496
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361