ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction

遥感 地理 变更检测 地图学 高分辨率 计算机科学
作者
Zhipan Wang,Minduan Xu,Zhongwu Wang,Qing Guo,Qingling Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103761-103761 被引量:1
标识
DOI:10.1016/j.jag.2024.103761
摘要

Change detection on high-resolution remote sensing imagery using end-to-end deep learning methods has attracted considerable attention in recent years. Nevertheless, the performance of end-to-end models on complicated scenarios still is limited. Interactive deep-learning models have proven to be a valuable technique for enhancing model performance with minimal human interaction. For instance, the clicks-based interactive models have attracted much attention recently, however, their performance on large regions or complex areas still can be further improved, because they cannot provide accurate semantics or shape prior information of the change regions for the interactive models, as we know that the shape and semantic features of changed regions in remote sensing imagery are typically irregular and complex. Scribble-based interactive form, which can accurately represent the shape or semantic features of the changed regions, thus it is quite suitable for change detection tasks in remote sensing imagery. Therefore, we proposed a novel interactive deep learning model called ScribbleCDNet in this manuscript, which pioneered the use of scribble as an interactive form for detecting change in bi-temporal high-resolution remote sensing imageries. Compared with the widely used clicks-based interactive deep learning models, the proposed ScribbleCDNet acquired superior results on four open-sourced change detection datasets. Last but not least, we also developed an interactive change detection tool with a user-friendly graphical interface, and it can aid researchers in conducting change detection or generating training samples conveniently. Moreover, the proposed ScribbleCDNet can also inspire researchers to develop other interactive deep-learning models related to semantic segmentation, landcover classification, or object extraction in high-resolution remote sensing imageries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meyako应助虞无声采纳,获得10
刚刚
liebealt完成签到 ,获得积分10
刚刚
1秒前
Fei完成签到,获得积分10
2秒前
热心市民完成签到 ,获得积分10
3秒前
青菜完成签到,获得积分10
3秒前
小黑猫跑酷完成签到 ,获得积分10
3秒前
qhdsyxy完成签到 ,获得积分0
4秒前
qiaoxi完成签到,获得积分10
7秒前
跳跃的白云完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研狗的春天完成签到 ,获得积分10
8秒前
美好灵寒完成签到 ,获得积分10
9秒前
LJ_2完成签到 ,获得积分10
11秒前
Guko完成签到 ,获得积分10
12秒前
哎呀完成签到 ,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
风铃完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
儒雅沛凝完成签到 ,获得积分10
23秒前
26秒前
Solarenergy完成签到,获得积分0
27秒前
研友_VZGVzn完成签到,获得积分10
32秒前
wantzzz发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
36秒前
hwa完成签到,获得积分10
39秒前
ru完成签到 ,获得积分10
39秒前
小明应助七月流火采纳,获得10
40秒前
darcy完成签到,获得积分10
44秒前
酷酷的涵蕾完成签到 ,获得积分10
44秒前
啦啦啦啦啦完成签到 ,获得积分10
44秒前
凶狠的白桃完成签到 ,获得积分10
46秒前
pp完成签到 ,获得积分10
48秒前
萝卜丁完成签到 ,获得积分0
52秒前
汤成莉完成签到 ,获得积分10
52秒前
LXZ完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613184
求助须知:如何正确求助?哪些是违规求助? 4018096
关于积分的说明 12437068
捐赠科研通 3700451
什么是DOI,文献DOI怎么找? 2040764
邀请新用户注册赠送积分活动 1073552
科研通“疑难数据库(出版商)”最低求助积分说明 957210