Machine learning based on SEER database to predict distant metastasis of thyroid cancer

医学 机器学习 接收机工作特性 逻辑回归 人工智能 转移 支持向量机 随机森林 肿瘤科 多层感知器 内科学 癌症 计算机科学 人工神经网络
作者
Lixue Qiao,Hao Li,Ziyang Wang,Hanlin Sun,Guicheng Feng,De-Tao Yin
出处
期刊:Endocrine [Springer Nature]
卷期号:84 (3): 1040-1050 被引量:2
标识
DOI:10.1007/s12020-023-03657-4
摘要

Distant metastasis of thyroid cancer often indicates poor prognosis, and it is important to identify patients who have developed distant metastasis or are at high risk as early as possible. This paper aimed to predict distant metastasis of thyroid cancer through the construction of machine learning models to provide a reference for clinical diagnosis and treatment. Data on demographic and clinicopathological characteristics of thyroid cancer patients between 2010 and 2015 were extracted from the National Institutes of Health (NIH) Surveillance, Epidemiology, and End Results (SEER) database. Our research used univariate and multivariate logistic models to screen independent risk factors, respectively. Decision Trees (DT), ElasticNet (ENET), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Perceptron (MLP), Radial Basis Function Support Vector Machine (RBFSVM) and seven machine learning models were compared and evaluated by the following metrics: the area under receiver operating characteristic curve (AUC), calibration curve, decision curve analysis (DCA), sensitivity(also called recall), specificity, precision, accuracy and F1 score. Interpretable machine learning was used to identify possible correlation between variables and distant metastasis. Independent risk factors for distant metastasis, including age, gender, race, marital status, histological type, capsular invasion, and number of lymph nodes metastases were screened by multifactorial regression analysis. Among the seven machine learning algorithms, RF was the best algorithm, with an AUC of 0.948, sensitivity of 0.919, accuracy of 0.845, and F1 score of 0.886 in the training set, and an AUC of 0.960, sensitivity of 0.929, accuracy of 0.906, and F1 score of 0.908 in the test set. The machine learning model constructed in this study helps in the early diagnosis of distant thyroid metastases and helps physicians to make better decisions and medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不配.给spark317的求助进行了留言
1秒前
2秒前
周不言发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
choyukyan完成签到,获得积分20
3秒前
cdd完成签到,获得积分10
3秒前
斯文败类应助蝙蝠采纳,获得50
4秒前
夏夏夏完成签到,获得积分10
5秒前
6秒前
Vincent完成签到,获得积分10
6秒前
7秒前
easypass关注了科研通微信公众号
7秒前
鸽鸽今天瘦了吗关注了科研通微信公众号
7秒前
luo发布了新的文献求助30
7秒前
wanci应助啵叽一口采纳,获得10
8秒前
9秒前
Vincent发布了新的文献求助10
10秒前
10秒前
10秒前
白了个白发布了新的文献求助10
11秒前
聪明宛完成签到 ,获得积分10
11秒前
11秒前
CodeCraft应助研友_nEW4G8采纳,获得10
12秒前
13秒前
雨辰完成签到,获得积分10
13秒前
tt完成签到,获得积分10
13秒前
13秒前
14秒前
DHY完成签到,获得积分10
14秒前
15秒前
15秒前
CipherSage应助菲菲公主采纳,获得10
15秒前
赘婿应助超帅的小鸽子采纳,获得10
17秒前
17秒前
18秒前
Angelyang发布了新的文献求助10
19秒前
赘婿应助老橡树采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847