已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based on SEER database to predict distant metastasis of thyroid cancer

医学 机器学习 接收机工作特性 逻辑回归 人工智能 转移 支持向量机 随机森林 肿瘤科 多层感知器 内科学 癌症 计算机科学 人工神经网络
作者
Lixue Qiao,Hao Li,Ziyang Wang,Hanlin Sun,Guicheng Feng,De-Tao Yin
出处
期刊:Endocrine [Springer Science+Business Media]
卷期号:84 (3): 1040-1050 被引量:5
标识
DOI:10.1007/s12020-023-03657-4
摘要

Distant metastasis of thyroid cancer often indicates poor prognosis, and it is important to identify patients who have developed distant metastasis or are at high risk as early as possible. This paper aimed to predict distant metastasis of thyroid cancer through the construction of machine learning models to provide a reference for clinical diagnosis and treatment. Data on demographic and clinicopathological characteristics of thyroid cancer patients between 2010 and 2015 were extracted from the National Institutes of Health (NIH) Surveillance, Epidemiology, and End Results (SEER) database. Our research used univariate and multivariate logistic models to screen independent risk factors, respectively. Decision Trees (DT), ElasticNet (ENET), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Perceptron (MLP), Radial Basis Function Support Vector Machine (RBFSVM) and seven machine learning models were compared and evaluated by the following metrics: the area under receiver operating characteristic curve (AUC), calibration curve, decision curve analysis (DCA), sensitivity(also called recall), specificity, precision, accuracy and F1 score. Interpretable machine learning was used to identify possible correlation between variables and distant metastasis. Independent risk factors for distant metastasis, including age, gender, race, marital status, histological type, capsular invasion, and number of lymph nodes metastases were screened by multifactorial regression analysis. Among the seven machine learning algorithms, RF was the best algorithm, with an AUC of 0.948, sensitivity of 0.919, accuracy of 0.845, and F1 score of 0.886 in the training set, and an AUC of 0.960, sensitivity of 0.929, accuracy of 0.906, and F1 score of 0.908 in the test set. The machine learning model constructed in this study helps in the early diagnosis of distant thyroid metastases and helps physicians to make better decisions and medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tufuczy发布了新的文献求助10
刚刚
科研通AI2S应助开心绫采纳,获得30
1秒前
Spice完成签到 ,获得积分10
2秒前
清澈水眸发布了新的文献求助10
2秒前
SOESAN完成签到,获得积分10
4秒前
小马甲应助哒哒采纳,获得10
5秒前
tufuczy完成签到,获得积分10
7秒前
芝士大王完成签到 ,获得积分10
8秒前
耀阳完成签到 ,获得积分10
11秒前
任全强完成签到,获得积分10
14秒前
bububusbu发布了新的文献求助10
14秒前
16秒前
小林完成签到 ,获得积分10
17秒前
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
21秒前
dayueban发布了新的文献求助10
21秒前
21秒前
12366666完成签到,获得积分20
22秒前
bububusbu完成签到,获得积分10
23秒前
2075848253完成签到,获得积分20
24秒前
Perion完成签到 ,获得积分10
25秒前
27秒前
28秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
28秒前
gy完成签到,获得积分20
29秒前
30秒前
GQZM发布了新的文献求助10
30秒前
ZM完成签到 ,获得积分10
31秒前
小池完成签到,获得积分10
34秒前
寒冷哈密瓜完成签到 ,获得积分0
35秒前
36秒前
SciGPT应助张大英采纳,获得10
37秒前
Jello发布了新的文献求助10
37秒前
小池发布了新的文献求助10
37秒前
故意的茗发布了新的文献求助10
41秒前
端庄的以寒完成签到 ,获得积分10
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965493
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155140
捐赠科研通 3245287
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176