Nakagami分布
烧蚀
超声波
超声波传感器
接收机工作特性
材料科学
生物医学工程
放射科
医学
计算机科学
频道(广播)
衰退
计算机网络
内科学
作者
Guang Yang,Jing Liu,Bing-Jie Yang,Junfeng Guo,C Wu,Bo Zhang,Siyuan Zhang
出处
期刊:Ultrasonics
[Elsevier]
日期:2024-04-01
卷期号:139: 107274-107274
被引量:1
标识
DOI:10.1016/j.ultras.2024.107274
摘要
Numerous quantitative ultrasound imaging techniques have demonstrated superior monitoring performance for thermal ablation when compared to conventional ultrasonic B-mode imaging. However, the absence of comparative studies involving various quantitative ultrasound imaging techniques hinders further clinical exploration. In this study, we simultaneously reconstructed ultrasonic Nakagami imaging, ultrasonic horizontally normalized Shannon entropy (hNSE) imaging, and ultrasonic differential attenuation coefficient intercept (DACI) imaging from ultrasound backscattered envelope data collected during high-intensity focused ultrasound ablation treatment. We comprehensively investigated their performance differences through qualitative and quantitative analyses, including the calculation of contrast-to-noise ratios (CNR) for ultrasonic images, receiver operating characteristic (ROC) analysis with corresponding indicators, the analysis of lesion area fitting relationships, and computational time consumption comparison. The mean CNR of hNSE imaging was 10.98 ± 4.48 dB, significantly surpassing the 3.82 ± 1.40 dB (p < 0.001, statistically significant) of Nakagami imaging and the 2.45 ± 0.74 dB (p < 0.001, statistically significant) of DACI imaging. This substantial difference underscores that hNSE imaging offers the highest contrast resolution for lesion recognition. Furthermore, we evaluated the ability of multiple ultrasonic parametric imaging to detect thermal ablation lesions using ROC curves. The area under the curve (AUC) for hNSE was 0.874, exceeding the values of 0.848 for Nakagami imaging and 0.832 for DACI imaging. Additionally, hNSE imaging exhibited the strongest linear correlation coefficient (R = 0.92) in the comparison of lesion area fitting, outperforming Nakagami imaging (R = 0.87) and DACI imaging (R = 0.85). hNSE imaging also performs best in real-time monitoring with each frame taking 6.38 s among multiple ultrasonic parametric imaging. Our findings unequivocally demonstrate that hNSE imaging excels in monitoring HIFU ablation treatment and holds the greatest potential for further clinical exploration.
科研通智能强力驱动
Strongly Powered by AbleSci AI