Multi-Level Pyramidal Microstructure-Based Pressure Sensors with High Sensitivity and Wide Linear Range for Healthcare Monitoring

压力传感器 可穿戴计算机 材料科学 灵敏度(控制系统) 微观结构 测距 计算机科学 电子工程 复合材料 嵌入式系统 机械工程 工程类 电信
作者
Tongge An,Yongjun Zhang,Jiahong Wen,Zhichao Dong,Qifeng Du,Long Liu,Yaxin Wang,Guozhong Xing,Xiaoyu Zhao
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (2): 726-735 被引量:23
标识
DOI:10.1021/acssensors.3c02001
摘要

Flexible pressure sensors have garnered significant attention in the field of wearable healthcare due to their scalability and shape variability. However, a crucial challenge in their practical application for various healthcare scenarios is striking a balance between the sensitivity and sensing range. This limitation arises from the reduced compressibility of the microstructures on the surface of pressure-sensitive materials under high pressure, resulting in progressive saturation of the sensor's response and leading to a restricted and nonlinear pressure sensing range. In this study, we present a novel approach utilizing multi-level pyramidal microstructures in flexible pressure sensors to achieve both high sensitivity (8775 kPa–1) and linear response (R2 = 0.997) over a wide pressure range (up to 1000 kPa). The effectiveness of the proposed design stems from the compensatory behavior of the lower pyramidal microstructures, which counteracts the declining sensitivity associated with the gradual hardening of the higher pyramidal microstructures. Furthermore, the sensor demonstrates a fast response time of 11.6 ms and a fast relaxation time of 3.8 ms and can reliably detect pressures as low as 30.2 Pa. Our findings highlight the applicability of this flexible pressure sensor in diverse human body health detection tasks, ranging from weak pulses to finger flexion and plantar pressure distribution. Notably, the proposed sensor design eliminates the need for replacing flexible pressure sensors with varying ranges, thereby enhancing their practical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季生完成签到,获得积分10
3秒前
徐徐完成签到,获得积分10
3秒前
4秒前
4秒前
haku完成签到,获得积分10
6秒前
可爱的函函应助laodie采纳,获得10
8秒前
Singularity应助忆楠采纳,获得10
9秒前
10秒前
请叫我风吹麦浪应助PengHu采纳,获得30
11秒前
jjjjjj完成签到,获得积分10
11秒前
凝子老师发布了新的文献求助10
13秒前
13秒前
橙子fy16_发布了新的文献求助10
15秒前
cookie完成签到,获得积分10
15秒前
柒柒的小熊完成签到,获得积分10
16秒前
16秒前
Hello应助萌之痴痴采纳,获得10
17秒前
hahaer完成签到,获得积分10
19秒前
领导范儿应助失眠虔纹采纳,获得10
20秒前
21秒前
Owen应助凝子老师采纳,获得10
24秒前
24秒前
南宫炽滔完成签到 ,获得积分10
26秒前
26秒前
丘比特应助飞羽采纳,获得10
27秒前
沙拉发布了新的文献求助10
27秒前
28秒前
29秒前
椰子糖完成签到 ,获得积分10
30秒前
30秒前
ZHU完成签到,获得积分10
31秒前
阳阳发布了新的文献求助10
32秒前
Raymond应助雪山飞龙采纳,获得10
32秒前
kk发布了新的文献求助10
33秒前
33秒前
34秒前
34秒前
34秒前
35秒前
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849