A nomogram based on clinical features and molecular abnormalities for predicting the prognosis of patients with acute myeloid leukemia

列线图 医学 比例危险模型 单变量 肿瘤科 髓系白血病 内科学 多元统计 多元分析 Lasso(编程语言) 曲线下面积 接收机工作特性 统计 数学 万维网 计算机科学
作者
Yuancheng Guo,Yujie Niu,Haiping Liang,Xiaoxiao Yang,Jinli Jian,Xiao Tang,Bei Liu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:12 (12): 3432-3442
标识
DOI:10.21037/tcr-23-1192
摘要

Background: The high clinical and molecular heterogeneity of acute myeloid leukemia (AML) has led to an unsatisfactory clinical prognosis, thus we sought to incorporate both clinical features and molecular abnormalities to construct a new prognostic model. Methods: A database search of the Gene Expression Omnibus (GEO) revealed 238 cases of adult AML. The independent risk factors were assessed using both univariate and multivariate Cox regression, as well as least absolute shrinkage and selection operator (LASSO) regression. The predictive accuracy, discriminatory power and clinical applicability of the nomogram were determined by the consistency index (C-index), calibration curves and decision curve analysis (DCA). In addition, a single-centre cohort of 135 cases was used for external validation. Results: Multivariate Cox regression analysis showed that the independent influences on overall survival (OS) were age, type of disease, DNMT3A, IDH2 and TP53 mutations. The area under the curve (AUC) values for the training set were 0.755, 0.745 and 0.757 at 1, 2 and 3 years respectively; the AUC for the validation set were 0.648, 0.648 and 0.654 at 1, 2 and 3 years; and the AUC for the northwest China set were 0.692, 0.724 and 0.689 at 1, 2 and 3 years. The calibration and DCA indicated good consistency and clinical utility of the nomogram. Finally, younger (age <60 years) and elderly (age ≥60 years) patients were each divided into two risk groups with significantly different survival rates. Conclusions: A nomogram consisting of five risk factors was developed for forecasting the prognosis of AML with guaranteed reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大有阳光应助Ivan采纳,获得10
1秒前
Owen应助生动的以云采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
雨相所至应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
雨相所至应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Miller应助科研通管家采纳,获得20
4秒前
5秒前
5秒前
踏实谷蓝发布了新的文献求助10
5秒前
陈隆完成签到,获得积分10
6秒前
小用一阵完成签到,获得积分10
6秒前
6秒前
6秒前
QZF完成签到,获得积分10
6秒前
柯柯完成签到 ,获得积分10
6秒前
范仪彬发布了新的文献求助10
7秒前
7秒前
David完成签到,获得积分10
7秒前
鲤鱼青槐完成签到,获得积分10
9秒前
蕊蕊完成签到,获得积分20
9秒前
9秒前
Yhcir完成签到,获得积分10
10秒前
丘比特应助寂寞的小夏采纳,获得10
10秒前
背后的铭完成签到,获得积分10
11秒前
Yhcir发布了新的文献求助10
13秒前
14秒前
从心从心完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155576
求助须知:如何正确求助?哪些是违规求助? 2806779
关于积分的说明 7870685
捐赠科研通 2465047
什么是DOI,文献DOI怎么找? 1312118
科研通“疑难数据库(出版商)”最低求助积分说明 629877
版权声明 601892