The prediction of residual stress of welding process based on Deep Neural Network

材料科学 残余应力 人工神经网络 焊接 压力(语言学) 过程(计算) 残余物 冶金 复合材料 人工智能 计算机科学 算法 语言学 哲学 操作系统
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier BV]
卷期号:39: 108595-108595
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHaha发布了新的文献求助10
1秒前
1秒前
2秒前
善学以致用应助lanren666采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
泰勒发布了新的文献求助10
5秒前
marry完成签到,获得积分10
6秒前
邹友亮完成签到,获得积分10
6秒前
6秒前
6秒前
领导范儿应助怡然尔芙采纳,获得10
6秒前
魔音甜菜发布了新的文献求助10
7秒前
YML发布了新的文献求助10
7秒前
加菲丰丰举报求助违规成功
8秒前
whatever举报求助违规成功
8秒前
千跃举报求助违规成功
8秒前
8秒前
刻苦的铁身完成签到,获得积分10
8秒前
8秒前
9秒前
尹汉通完成签到 ,获得积分10
9秒前
小刘发布了新的文献求助10
9秒前
hiyuz完成签到,获得积分10
9秒前
朱建军给月下荷花的求助进行了留言
9秒前
9秒前
SYLH应助hky采纳,获得20
9秒前
研友_VZG7GZ应助酷炫寄真采纳,获得10
9秒前
蔡军完成签到 ,获得积分10
10秒前
lysixsixsix发布了新的文献求助10
10秒前
Orange应助端庄的石头采纳,获得10
10秒前
10秒前
11秒前
12秒前
铭轩完成签到,获得积分10
12秒前
DrWang发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113