The prediction of residual stress of welding process based on deep neural network

材料科学 残余应力 有限元法 人工神经网络 卷积神经网络 焊接 失真(音乐) 压力(语言学) 过程(计算) 残余物 冶金 机械工程 结构工程 人工智能 工程类 计算机科学 算法 放大器 CMOS芯片 哲学 操作系统 语言学 光电子学
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108595-108595 被引量:8
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水博士发布了新的文献求助10
1秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
2秒前
一线西风发布了新的文献求助10
2秒前
hanhanhan发布了新的文献求助50
2秒前
AJ发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
kkkhhh发布了新的文献求助10
4秒前
天天快乐应助SEV采纳,获得10
4秒前
悦耳安莲完成签到,获得积分20
4秒前
传奇3应助张123采纳,获得10
4秒前
zgh5615完成签到,获得积分10
4秒前
Taki发布了新的文献求助10
4秒前
星辰大海应助Duxize采纳,获得10
6秒前
6秒前
7秒前
cj发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
开心夏旋完成签到,获得积分10
11秒前
嘞是举仔应助专注的草丛采纳,获得20
12秒前
好好好完成签到,获得积分10
12秒前
洁净如音完成签到,获得积分10
12秒前
wheeler1发布了新的文献求助10
12秒前
浮云发布了新的文献求助30
13秒前
13秒前
13秒前
Redamancy完成签到,获得积分10
14秒前
盒子完成签到,获得积分20
14秒前
开心夏旋发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420