亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The prediction of residual stress of welding process based on deep neural network

材料科学 残余应力 有限元法 人工神经网络 卷积神经网络 焊接 失真(音乐) 压力(语言学) 过程(计算) 残余物 冶金 机械工程 结构工程 人工智能 工程类 计算机科学 算法 放大器 CMOS芯片 哲学 操作系统 语言学 光电子学
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108595-108595 被引量:8
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史育川完成签到,获得积分10
刚刚
123发布了新的文献求助10
3秒前
史育川发布了新的文献求助10
5秒前
5秒前
852应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
归尘应助科研通管家采纳,获得10
8秒前
体贴花卷发布了新的文献求助10
15秒前
韩国辉完成签到 ,获得积分10
15秒前
ucas大菠萝完成签到,获得积分10
17秒前
搜集达人应助123采纳,获得10
19秒前
霏霏不是菲菲完成签到,获得积分20
22秒前
26秒前
GKPFT完成签到,获得积分10
27秒前
BowieHuang应助GKPFT采纳,获得10
30秒前
30秒前
36秒前
ybk666完成签到,获得积分10
38秒前
39秒前
852应助Hou采纳,获得10
44秒前
赘婿应助体贴花卷采纳,获得10
47秒前
48秒前
53秒前
世良发布了新的文献求助10
54秒前
搜集达人应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
1分钟前
daidai发布了新的文献求助10
1分钟前
哈哈哈开开心心完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助VV2001采纳,获得10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
daidai完成签到,获得积分10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399