亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The prediction of residual stress of welding process based on Deep Neural Network

材料科学 残余应力 人工神经网络 焊接 压力(语言学) 过程(计算) 残余物 冶金 复合材料 人工智能 计算机科学 算法 语言学 哲学 操作系统
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108595-108595
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助儒雅从筠采纳,获得10
1秒前
莱芙完成签到 ,获得积分10
13秒前
24秒前
newplayer发布了新的文献求助10
30秒前
努力考博的咸鱼完成签到 ,获得积分10
37秒前
传奇3应助gujianhua采纳,获得10
1分钟前
1分钟前
gujianhua发布了新的文献求助10
1分钟前
gujianhua完成签到,获得积分10
1分钟前
jane123完成签到,获得积分10
1分钟前
Raunio完成签到,获得积分10
1分钟前
悠悠夏日长完成签到 ,获得积分10
1分钟前
1分钟前
jane123发布了新的文献求助200
2分钟前
早晚完成签到 ,获得积分10
2分钟前
坚强的广山完成签到,获得积分0
2分钟前
执着艳完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
852应助尼克采纳,获得10
3分钟前
Boren完成签到,获得积分10
4分钟前
猪猪猪完成签到,获得积分10
4分钟前
酷炫的善愁关注了科研通微信公众号
4分钟前
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
随机子应助科研通管家采纳,获得10
4分钟前
尼克发布了新的文献求助10
4分钟前
尼克完成签到,获得积分10
4分钟前
fengfenghao完成签到 ,获得积分10
4分钟前
归海一刀完成签到,获得积分10
5分钟前
5分钟前
Xxxudi发布了新的文献求助30
5分钟前
思源应助沉迷学习采纳,获得10
5分钟前
Xxxudi发布了新的文献求助10
6分钟前
jyy应助科研通管家采纳,获得30
6分钟前
华仔应助耍酷芙蓉采纳,获得10
6分钟前
牛少辉发布了新的文献求助10
6分钟前
烟花应助长不出的菌采纳,获得10
7分钟前
Daisykiller完成签到,获得积分20
7分钟前
香蕉觅云应助傅夜山采纳,获得10
7分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822407
关于积分的说明 7939160
捐赠科研通 2483017
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627