已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The prediction of residual stress of welding process based on deep neural network

材料科学 残余应力 有限元法 人工神经网络 卷积神经网络 焊接 失真(音乐) 压力(语言学) 过程(计算) 残余物 冶金 机械工程 结构工程 人工智能 工程类 计算机科学 算法 放大器 CMOS芯片 哲学 操作系统 语言学 光电子学
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier BV]
卷期号:39: 108595-108595 被引量:8
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助LOTUS采纳,获得10
刚刚
liry完成签到 ,获得积分10
2秒前
2秒前
2秒前
Billy发布了新的文献求助10
3秒前
3秒前
wuming完成签到,获得积分10
3秒前
峡星牙发布了新的文献求助10
3秒前
阳光男孩发布了新的文献求助10
3秒前
4秒前
毛舒敏完成签到 ,获得积分10
5秒前
阔阔kkkk应助小火车采纳,获得10
5秒前
小债完成签到,获得积分10
5秒前
7秒前
今后应助xuleiman采纳,获得10
8秒前
10秒前
Mandarine发布了新的文献求助10
10秒前
青阳完成签到,获得积分10
12秒前
浮游应助我爱大肠采纳,获得10
12秒前
爱静静应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
爱静静应助科研通管家采纳,获得10
13秒前
爱静静应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
欢喜梦凡完成签到 ,获得积分10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
孙琪琪发布了新的文献求助10
14秒前
15秒前
曾经初珍完成签到,获得积分20
16秒前
18秒前
为为的小耳朵完成签到 ,获得积分10
19秒前
heheheli发布了新的文献求助10
20秒前
酷波er应助心行采纳,获得10
20秒前
Lucas应助jerry采纳,获得10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899338
求助须知:如何正确求助?哪些是违规求助? 4179706
关于积分的说明 12975494
捐赠科研通 3943810
什么是DOI,文献DOI怎么找? 2163542
邀请新用户注册赠送积分活动 1181774
关于科研通互助平台的介绍 1087499