亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The prediction of residual stress of welding process based on deep neural network

材料科学 残余应力 有限元法 人工神经网络 卷积神经网络 焊接 失真(音乐) 压力(语言学) 过程(计算) 残余物 冶金 机械工程 结构工程 人工智能 工程类 计算机科学 算法 放大器 CMOS芯片 哲学 操作系统 语言学 光电子学
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108595-108595 被引量:8
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifei0729完成签到,获得积分20
1秒前
momi发布了新的文献求助10
1秒前
养乐多敬你完成签到 ,获得积分10
2秒前
YJL完成签到 ,获得积分10
5秒前
6秒前
nhzz2023完成签到 ,获得积分0
8秒前
哈基米难背绿豆完成签到,获得积分20
8秒前
今后应助momi采纳,获得10
8秒前
11秒前
123456发布了新的文献求助10
12秒前
cyanpomelo完成签到,获得积分10
16秒前
教生物的杨教授完成签到,获得积分10
17秒前
17秒前
无语的巨人完成签到 ,获得积分10
21秒前
Ava应助111222333采纳,获得30
23秒前
26秒前
KY2022完成签到,获得积分10
29秒前
sadascaqwqw发布了新的文献求助10
31秒前
小秃子完成签到,获得积分10
34秒前
于yu完成签到 ,获得积分10
40秒前
40秒前
善良的灵羊完成签到 ,获得积分10
41秒前
貔貅完成签到,获得积分10
41秒前
45秒前
Criminology34举报wshyzhxxxn求助涉嫌违规
46秒前
sxmt123456789发布了新的文献求助30
46秒前
Nick_YFWS完成签到,获得积分10
46秒前
48秒前
天之道完成签到,获得积分10
48秒前
默笙完成签到 ,获得积分10
50秒前
天之道发布了新的文献求助10
50秒前
51秒前
51秒前
完美世界应助yinshan采纳,获得10
51秒前
依桉完成签到 ,获得积分10
52秒前
刚少kk完成签到,获得积分10
52秒前
英俊的铭应助天之道采纳,获得10
57秒前
Owen应助VDC采纳,获得10
57秒前
nn应助sxmt123456789采纳,获得10
58秒前
卷卷应助sxmt123456789采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599