清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The prediction of residual stress of welding process based on deep neural network

材料科学 残余应力 有限元法 人工神经网络 卷积神经网络 焊接 失真(音乐) 压力(语言学) 过程(计算) 残余物 冶金 机械工程 结构工程 人工智能 工程类 计算机科学 算法 放大器 CMOS芯片 哲学 操作系统 语言学 光电子学
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108595-108595 被引量:8
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI6应助Vivian薇薇安采纳,获得10
24秒前
41秒前
柔弱夜山发布了新的文献求助10
45秒前
鲤鱼山人完成签到 ,获得积分10
46秒前
56秒前
1分钟前
不甜的唐完成签到,获得积分10
1分钟前
柔弱夜山发布了新的文献求助10
1分钟前
1分钟前
柔弱夜山发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
羞涩的傲菡完成签到,获得积分10
2分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
3分钟前
柔弱夜山完成签到,获得积分10
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
4分钟前
GMEd1son完成签到,获得积分10
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
王美祥发布了新的文献求助10
5分钟前
phd关闭了phd文献求助
5分钟前
花生油炒花生米完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
Ava应助Everything采纳,获得10
6分钟前
6分钟前
小西完成签到 ,获得积分0
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766578
关于积分的说明 15025983
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568206
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175