MDT: semi-supervised medical image segmentation with mixup-decoupling training

计算机科学 分割 人工智能 半监督学习 标记数据 机器学习 模式识别(心理学) 数据挖掘
作者
Jianwu Long,Yanfei Ren,Chen Ning Yang,Pengcheng Ren,Zilong Zeng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (6): 065012-065012
标识
DOI:10.1088/1361-6560/ad2715
摘要

Abstract Objective . In the field of medicine, semi-supervised segmentation algorithms hold crucial research significance while also facing substantial challenges, primarily due to the extreme scarcity of expert-level annotated medical image data. However, many existing semi-supervised methods still process labeled and unlabeled data in inconsistent ways, which can lead to knowledge learned from labeled data being discarded to some extent. This not only lacks a variety of perturbations to explore potential robust information in unlabeled data but also ignores the confirmation bias and class imbalance issues in pseudo-labeling methods. Approach . To solve these problems, this paper proposes a semi-supervised medical image segmentation method ‘mixup-decoupling training (MDT)’ that combines the idea of consistency and pseudo-labeling. Firstly, MDT introduces a new perturbation strategy ‘mixup-decoupling’ to fully regularize training data. It not only mixes labeled and unlabeled data at the data level but also performs decoupling operations between the output predictions of mixed target data and labeled data at the feature level to obtain strong version predictions of unlabeled data. Then it establishes a dual learning paradigm based on consistency and pseudo-labeling. Secondly, MDT employs a novel categorical entropy filtering approach to pick high-confidence pseudo-labels for unlabeled data, facilitating more refined supervision. Main results . This paper compares MDT with other advanced semi-supervised methods on 2D and 3D datasets separately. A large number of experimental results show that MDT achieves competitive segmentation performance and outperforms other state-of-the-art semi-supervised segmentation methods. Significance . This paper proposes a semi-supervised medical image segmentation method MDT, which greatly reduces the demand for manually labeled data and eases the difficulty of data annotation to a great extent. In addition, MDT not only outperforms many advanced semi-supervised image segmentation methods in quantitative and qualitative experimental results, but also provides a new and developable idea for semi-supervised learning and computer-aided diagnosis technology research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
刚刚
1秒前
kook完成签到 ,获得积分10
1秒前
张城豪发布了新的文献求助10
2秒前
3秒前
老阳发布了新的文献求助10
3秒前
SciGPT应助胆小菇采纳,获得10
4秒前
4秒前
5秒前
养鸟的人完成签到,获得积分10
5秒前
感动煎饼发布了新的文献求助10
6秒前
7秒前
斯文败类应助肥肥采纳,获得10
7秒前
8秒前
czc发布了新的文献求助10
8秒前
筱筱完成签到,获得积分10
8秒前
9秒前
斑比完成签到,获得积分10
9秒前
彭于晏应助懒羊羊采纳,获得10
11秒前
11秒前
JamesPei应助知性的采珊采纳,获得10
11秒前
Riggle G完成签到,获得积分10
12秒前
今后应助菠萝冰棒采纳,获得10
13秒前
14秒前
15秒前
18秒前
可耐的乐荷完成签到,获得积分10
18秒前
19秒前
19秒前
靴子完成签到,获得积分10
19秒前
Dreames发布了新的文献求助10
19秒前
半柚应助找找采纳,获得10
20秒前
大模型应助找找采纳,获得10
20秒前
科研通AI5应助墨染星辰采纳,获得10
20秒前
大个应助Bin采纳,获得10
22秒前
77完成签到,获得积分20
22秒前
喜喜完成签到,获得积分10
22秒前
非凡梦完成签到,获得积分10
23秒前
山花浪漫应助we采纳,获得10
23秒前
1111发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882