The Effect of Supply Uncertainty on Dynamic Procurement and Pricing Strategies Under Lost Sales

供应链 动态定价 采购 供求关系 经济 产品(数学) 微观经济学 动态需求 计算机科学 班级(哲学) 运筹学 业务 营销 工程类 管理 功率(物理) 人工智能 几何学 物理 量子力学 数学
作者
Qi Feng,Lei Li,J. George Shanthikumar
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (1): 108-127 被引量:5
标识
DOI:10.1177/10591478231224916
摘要

The uncertainty in the supplier’s material flows has become a norm rather than an exception in supply chains. The supply uncertainty can result in unexpected inventory shortfall, amplifying lost sales. However, the design of inventory replenishment and product pricing policy to mitigate both supply uncertainty and demand loss remains unexplored. This is because the resulting dynamic planning problem is highly nonconcave and thus intractable. To address this challenge, we propose an approach that focuses on a class of intuitively appealing and practically plausible policies. Specifically, as the level of on-hand inventory increases, we expect an increased amount of demand fulfillment and a decreased product price. Applying the notions of stochastic functions, we show that, under general conditions of the stochastic supply and demand functions, the dynamic planning problem becomes a concave optimization problem over the restricted policy class. We further reduce the set of candidate policies to a refined class by excluding the dominated policies. A refined policy can be easily computed, and appropriately selected refined policies produce close-to-optimal profits. These developments allow us to evaluate the consequences of demand loss. In particular, demand retention through backordering can be beneficial when overstocking is costly in relation to understocking, but the benefit is insensitive to supply and demand uncertainties. Moreover, inventory-based dynamic pricing is more valuable in mitigating supply risk under lost sales than under backordering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanghuihui发布了新的文献求助30
1秒前
LaTeXer应助科研通管家采纳,获得100
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得100
2秒前
思源应助茶马采纳,获得10
2秒前
wop111应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
SciGPT应助大聪明采纳,获得10
3秒前
4秒前
6秒前
傲娇皮皮虾完成签到 ,获得积分10
6秒前
6秒前
石铜完成签到,获得积分20
7秒前
完美世界应助asdfgh采纳,获得80
7秒前
Criminology34应助wanghuihui采纳,获得10
9秒前
Hao发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
lilac发布了新的文献求助10
11秒前
彭于晏应助qc采纳,获得10
12秒前
12秒前
13秒前
sleepingfish应助灵巧的孤容采纳,获得20
13秒前
15秒前
科研牛马完成签到,获得积分20
16秒前
打打应助可靠的寒风采纳,获得10
17秒前
大聪明发布了新的文献求助10
19秒前
子小孙发布了新的文献求助10
19秒前
合合汀发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461