Clinical application of machine learning models in patients with prostate cancer before prostatectomy

前列腺切除术 医学 接收机工作特性 前列腺癌 人工智能 前列腺 放射科 机器学习 泌尿科 计算机科学 内科学 癌症
作者
Adalgisa Guerra,Matthew Orton,Helen H. Wang,Marianna Konidari,Kris Maes,Nikolaos Papanikolaou,Dow‐Mu Koh
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:5
标识
DOI:10.1186/s40644-024-00666-y
摘要

Abstract Background To build machine learning predictive models for surgical risk assessment of extracapsular extension (ECE) in patients with prostate cancer (PCa) before radical prostatectomy; and to compare the use of decision curve analysis (DCA) and receiver operating characteristic (ROC) metrics for selecting input feature combinations in models. Methods This retrospective observational study included two independent data sets: 139 participants from a single institution (training), and 55 from 15 other institutions (external validation), both treated with Robotic Assisted Radical Prostatectomy (RARP). Five ML models, based on different combinations of clinical, semantic (interpreted by a radiologist) and radiomics features computed from T2W-MRI images, were built to predict extracapsular extension in the prostatectomy specimen (pECE+). DCA plots were used to rank the models’ net benefit when assigning patients to prostatectomy with non-nerve-sparing surgery (NNSS) or nerve-sparing surgery (NSS), depending on the predicted ECE status. DCA model rankings were compared with those drived from ROC area under the curve (AUC). Results In the training data, the model using clinical, semantic, and radiomics features gave the highest net benefit values across relevant threshold probabilities, and similar decision curve was observed in the external validation data. The model ranking using the AUC was different in the discovery group and favoured the model using clinical + semantic features only. Conclusions The combined model based on clinical, semantic and radiomic features may be used to predict pECE + in patients with PCa and results in a positive net benefit when used to choose between prostatectomy with NNS or NNSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
惠惠发布了新的文献求助10
刚刚
深夜看文献的小刘完成签到,获得积分10
刚刚
菊菊发布了新的文献求助10
刚刚
刚刚
猪猪发布了新的文献求助10
1秒前
胖豆发布了新的文献求助10
1秒前
巴啦啦能量完成签到 ,获得积分10
1秒前
2秒前
完美凝海发布了新的文献求助30
2秒前
科研菜鸟发布了新的文献求助10
2秒前
升学顺利身体健康完成签到,获得积分10
3秒前
3秒前
爱学习发布了新的文献求助10
3秒前
cc发布了新的文献求助10
4秒前
533完成签到,获得积分20
4秒前
科研通AI5应助yx采纳,获得10
4秒前
5秒前
koi发布了新的文献求助10
5秒前
浦肯野应助湖月照我影采纳,获得30
5秒前
5秒前
陈博士完成签到,获得积分10
6秒前
Citrus完成签到,获得积分10
7秒前
费老三发布了新的文献求助30
7秒前
华仔应助chenjyuu采纳,获得10
7秒前
7秒前
最最最发布了新的文献求助10
7秒前
7秒前
Tuesday完成签到 ,获得积分10
8秒前
8秒前
9秒前
阿毛发布了新的文献求助10
10秒前
11秒前
情怀应助灵巧荆采纳,获得10
11秒前
Ll发布了新的文献求助10
11秒前
Peter发布了新的文献求助30
12秒前
12秒前
13秒前
科研韭菜发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762