Clinical application of machine learning models in patients with prostate cancer before prostatectomy

前列腺切除术 医学 接收机工作特性 前列腺癌 人工智能 前列腺 放射科 机器学习 泌尿科 计算机科学 内科学 癌症
作者
Adalgisa Guerra,Matthew Orton,Helen H. Wang,Marianna Konidari,Kris Maes,Nikolaos Papanikolaou,Dow‐Mu Koh
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:5
标识
DOI:10.1186/s40644-024-00666-y
摘要

Abstract Background To build machine learning predictive models for surgical risk assessment of extracapsular extension (ECE) in patients with prostate cancer (PCa) before radical prostatectomy; and to compare the use of decision curve analysis (DCA) and receiver operating characteristic (ROC) metrics for selecting input feature combinations in models. Methods This retrospective observational study included two independent data sets: 139 participants from a single institution (training), and 55 from 15 other institutions (external validation), both treated with Robotic Assisted Radical Prostatectomy (RARP). Five ML models, based on different combinations of clinical, semantic (interpreted by a radiologist) and radiomics features computed from T2W-MRI images, were built to predict extracapsular extension in the prostatectomy specimen (pECE+). DCA plots were used to rank the models’ net benefit when assigning patients to prostatectomy with non-nerve-sparing surgery (NNSS) or nerve-sparing surgery (NSS), depending on the predicted ECE status. DCA model rankings were compared with those drived from ROC area under the curve (AUC). Results In the training data, the model using clinical, semantic, and radiomics features gave the highest net benefit values across relevant threshold probabilities, and similar decision curve was observed in the external validation data. The model ranking using the AUC was different in the discovery group and favoured the model using clinical + semantic features only. Conclusions The combined model based on clinical, semantic and radiomic features may be used to predict pECE + in patients with PCa and results in a positive net benefit when used to choose between prostatectomy with NNS or NNSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研小白发布了新的文献求助10
3秒前
迷人的绿茶完成签到,获得积分10
4秒前
PENGUIN完成签到,获得积分10
4秒前
科研通AI2S应助aaaaaaa采纳,获得10
4秒前
充电宝应助太阳能之子采纳,获得10
5秒前
5秒前
筱筱完成签到 ,获得积分10
8秒前
ing发布了新的文献求助10
8秒前
搜集达人应助meng采纳,获得50
10秒前
11秒前
12秒前
嘻嘻完成签到,获得积分10
12秒前
巴达天使发布了新的文献求助10
13秒前
xf完成签到,获得积分10
13秒前
小青完成签到 ,获得积分10
15秒前
pcr发布了新的文献求助10
15秒前
15秒前
17秒前
Lori完成签到,获得积分10
18秒前
酷波er应助小雄采纳,获得10
18秒前
苏木235完成签到 ,获得积分10
22秒前
阿巴阿巴完成签到,获得积分20
22秒前
邾佳完成签到 ,获得积分10
26秒前
zzt完成签到,获得积分20
28秒前
29秒前
Akim应助mei采纳,获得10
29秒前
panpan发布了新的文献求助10
30秒前
浆糊应助牛马采纳,获得10
34秒前
35秒前
mjm发布了新的文献求助10
35秒前
蛋挞好好吃完成签到,获得积分10
35秒前
英俊的铭应助vvdd采纳,获得10
36秒前
尤亦云完成签到,获得积分10
36秒前
mingjie发布了新的文献求助10
38秒前
nananaa完成签到,获得积分20
38秒前
mmddlj完成签到 ,获得积分10
38秒前
39秒前
39秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279187
求助须知:如何正确求助?哪些是违规求助? 2917504
关于积分的说明 8386419
捐赠科研通 2588344
什么是DOI,文献DOI怎么找? 1410057
科研通“疑难数据库(出版商)”最低求助积分说明 657588
邀请新用户注册赠送积分活动 638713