A transformer-based diffusion probabilistic model for heart rate and blood pressure forecasting in Intensive Care Unit

计算机科学 血压 心率 重症监护室 概率逻辑 变压器 人工智能 医学 重症监护医学 内科学 工程类 电压 电气工程
作者
Ping Chang,Huayu Li,Stuart F. Quan,Shuyang Lu,Shu‐Fen Wung,Janet Roveda,Ao Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108060-108060 被引量:3
标识
DOI:10.1016/j.cmpb.2024.108060
摘要

Vital sign monitoring in the Intensive Care Unit (ICU) is crucial for enabling prompt interventions for patients. This underscores the need for an accurate predictive system. Therefore, this study proposes a novel deep learning approach for forecasting Heart Rate (HR), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP) in the ICU. We extracted 24,886 ICU stays from the MIMIC-III database which contains data from over 46 thousand patients, to train and test the model. The model proposed in this study, Transformer-based Diffusion Probabilistic Model for Sparse Time Series Forecasting (TDSTF), merges Transformer and diffusion models to forecast vital signs. The TDSTF model showed state-of-the-art performance in predicting vital signs in the ICU, outperforming other models' ability to predict distributions of vital signs and being more computationally efficient. The code is available at https://github.com/PingChang818/TDSTF. The results of the study showed that TDSTF achieved a Standardized Average Continuous Ranked Probability Score (SACRPS) of 0.4438 and a Mean Squared Error (MSE) of 0.4168, an improvement of 18.9% and 34.3% over the best baseline model, respectively. The inference speed of TDSTF is more than 17 times faster than the best baseline model. TDSTF is an effective and efficient solution for forecasting vital signs in the ICU, and it shows a significant improvement compared to other models in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wully关注了科研通微信公众号
1秒前
星辰大海应助彬彬采纳,获得10
1秒前
尹天扬完成签到,获得积分10
1秒前
谨慎雪碧完成签到 ,获得积分10
1秒前
2秒前
完美世界应助《子非鱼》采纳,获得10
3秒前
xwm完成签到,获得积分10
4秒前
我爱物理发布了新的文献求助10
4秒前
5秒前
XXXXXX完成签到,获得积分10
5秒前
shhoing应助开朗嵩采纳,获得10
5秒前
科研通AI2S应助45采纳,获得10
5秒前
勤劳的访烟完成签到,获得积分10
5秒前
文艺紫菜应助May采纳,获得10
6秒前
快去读文献完成签到,获得积分20
7秒前
与世无争完成签到,获得积分10
7秒前
7秒前
XXXXXX发布了新的文献求助10
7秒前
搞怪元彤发布了新的文献求助10
8秒前
shijie完成签到,获得积分10
9秒前
霜序完成签到,获得积分10
9秒前
Verity应助Au采纳,获得20
10秒前
空瓶氧气完成签到,获得积分20
12秒前
1234发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
wully发布了新的文献求助10
13秒前
14秒前
刚国忠发布了新的文献求助10
14秒前
14秒前
YDX完成签到 ,获得积分10
15秒前
16秒前
17秒前
Akim应助123采纳,获得10
18秒前
18秒前
Zhusy发布了新的文献求助10
19秒前
19秒前
文艺紫菜应助清脆靳采纳,获得10
19秒前
Orange应助Andy采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642291
关于积分的说明 14667488
捐赠科研通 4583725
什么是DOI,文献DOI怎么找? 2514379
邀请新用户注册赠送积分活动 1488727
关于科研通互助平台的介绍 1459336