已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A transformer-based diffusion probabilistic model for heart rate and blood pressure forecasting in Intensive Care Unit

计算机科学 血压 心率 重症监护室 概率逻辑 变压器 人工智能 医学 重症监护医学 内科学 工程类 电压 电气工程
作者
Ping Chang,Huayu Li,Stuart F. Quan,Shuyang Lu,Shu‐Fen Wung,Janet Roveda,Ao Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108060-108060 被引量:3
标识
DOI:10.1016/j.cmpb.2024.108060
摘要

Vital sign monitoring in the Intensive Care Unit (ICU) is crucial for enabling prompt interventions for patients. This underscores the need for an accurate predictive system. Therefore, this study proposes a novel deep learning approach for forecasting Heart Rate (HR), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP) in the ICU. We extracted 24,886 ICU stays from the MIMIC-III database which contains data from over 46 thousand patients, to train and test the model. The model proposed in this study, Transformer-based Diffusion Probabilistic Model for Sparse Time Series Forecasting (TDSTF), merges Transformer and diffusion models to forecast vital signs. The TDSTF model showed state-of-the-art performance in predicting vital signs in the ICU, outperforming other models' ability to predict distributions of vital signs and being more computationally efficient. The code is available at https://github.com/PingChang818/TDSTF. The results of the study showed that TDSTF achieved a Standardized Average Continuous Ranked Probability Score (SACRPS) of 0.4438 and a Mean Squared Error (MSE) of 0.4168, an improvement of 18.9% and 34.3% over the best baseline model, respectively. The inference speed of TDSTF is more than 17 times faster than the best baseline model. TDSTF is an effective and efficient solution for forecasting vital signs in the ICU, and it shows a significant improvement compared to other models in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳发布了新的文献求助10
1秒前
Akim应助柚子采纳,获得10
2秒前
大模型应助PAPA采纳,获得10
3秒前
4秒前
Hello应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
CCCheny应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
6秒前
CCCheny应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得100
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得100
6秒前
Hello应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
jike发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938